Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Pathog ; 20(6): e1012301, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38913753

ABSTRACT

Salmonella enterica Serovar Typhimurium (Salmonella) and its bacteriophage P22 are a model system for the study of horizontal gene transfer by generalized transduction. Typically, the P22 DNA packaging machinery initiates packaging when a short sequence of DNA, known as the pac site, is recognized on the P22 genome. However, sequences similar to the pac site in the host genome, called pseudo-pac sites, lead to erroneous packaging and subsequent generalized transduction of Salmonella DNA. While the general genomic locations of the Salmonella pseudo-pac sites are known, the sequences themselves have not been determined. We used visualization of P22 sequencing reads mapped to host Salmonella genomes to define regions of generalized transduction initiation and the likely locations of pseudo-pac sites. We searched each genome region for the sequence with the highest similarity to the P22 pac site and aligned the resulting sequences. We built a regular expression (sequence match pattern) from the alignment and used it to search the genomes of two P22-susceptible Salmonella strains-LT2 and 14028S-for sequence matches. The final regular expression successfully identified pseudo-pac sites in both LT2 and 14028S that correspond with generalized transduction initiation sites in mapped read coverages. The pseudo-pac site sequences identified in this study can be used to predict locations of generalized transduction in other P22-susceptible hosts or to initiate generalized transduction at specific locations in P22-susceptible hosts with genetic engineering. Furthermore, the bioinformatics approach used to identify the Salmonella pseudo-pac sites in this study could be applied to other phage-host systems.


Subject(s)
Bacteriophage P22 , Salmonella typhimurium , Bacteriophage P22/genetics , Salmonella typhimurium/virology , Salmonella typhimurium/genetics , Transduction, Genetic , Gene Transfer, Horizontal , Genome, Bacterial , DNA Packaging
2.
bioRxiv ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38585963

ABSTRACT

Salmonella enterica Serovar Typhimurium (Salmonella) and its bacteriophage P22 are a model system for the study of horizontal gene transfer by generalized transduction. Typically, the P22 DNA packaging machinery initiates packaging when a short sequence of DNA, known as the pac site, is recognized on the P22 genome. However, sequences similar to the pac site in the host genome, called pseudo-pac sites, lead to erroneous packaging and subsequent generalized transduction of Salmonella DNA. While the general genomic locations of the Salmonella pseudo-pac sites are known, the sequences themselves have not been determined. We used visualization of P22 sequencing reads mapped to host Salmonella genomes to define regions of generalized transduction initiation and the likely locations of pseudo-pac sites. We searched each genome region for the sequence with the highest similarity to the P22 pac site and aligned the resulting sequences. We built a regular expression (sequence match pattern) from the alignment and used it to search the genomes of two P22-susceptible Salmonella strains- LT2 and 14028S- for sequence matches. The final regular expression successfully identified pseudo-pac sites in both LT2 and 14028S that correspond with generalized transduction initiation sites in mapped read coverages. The pseudo-pac site sequences identified in this study can be used to predict locations of generalized transduction in other P22-susceptible hosts or to initiate generalized transduction at specific locations in P22-susceptible hosts with genetic engineering. Furthermore, the bioinformatics approach used to identify the Salmonella pseudo-pac sites in this study could be applied to other phage-host systems.

3.
PeerJ ; 11: e16310, 2023.
Article in English | MEDLINE | ID: mdl-37901455

ABSTRACT

We collected oral and/or rectal swabs and serum from dogs and cats living in homes with SARS-CoV-2-PCR-positive persons for SARS-CoV-2 PCR and serology testing. Pre-COVID-19 serum samples from dogs and cats were used as negative controls, and samples were tested in duplicate at different timepoints. Raw ELISA results scrutinized relative to known negative samples suggested that cut-offs for IgG seropositivity may require adjustment relative to previously proposed values, while proposed cut-offs for IgM require more extensive validation. A small number of pet dogs (2/43, 4.7%) and one cat (1/21, 4.8%) were positive for SARS-CoV-2 RNA, and 28.6 and 37.5% of cats and dogs were positive for anti-SARS-CoV-2 IgG, respectively.


Subject(s)
COVID-19 , Cat Diseases , Dog Diseases , Animals , Cats , Dogs , SARS-CoV-2/genetics , COVID-19/diagnosis , Pets , North Carolina/epidemiology , RNA, Viral/genetics , Dog Diseases/diagnosis , Immunoglobulin G
4.
BMC Biol ; 21(1): 199, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37743497

ABSTRACT

BACKGROUND: High-throughput sequencing measurements of the vaginal microbiome have yielded intriguing potential relationships between the vaginal microbiome and preterm birth (PTB; live birth prior to 37 weeks of gestation). However, results across studies have been inconsistent. RESULTS: Here, we perform an integrated analysis of previously published datasets from 12 cohorts of pregnant women whose vaginal microbiomes were measured by 16S rRNA gene sequencing. Of 2039 women included in our analysis, 586 went on to deliver prematurely. Substantial variation between these datasets existed in their definition of preterm birth, characteristics of the study populations, and sequencing methodology. Nevertheless, a small group of taxa comprised a vast majority of the measured microbiome in all cohorts. We trained machine learning (ML) models to predict PTB from the composition of the vaginal microbiome, finding low to modest predictive accuracy (0.28-0.79). Predictive accuracy was typically lower when ML models trained in one dataset predicted PTB in another dataset. Earlier preterm birth (< 32 weeks, < 34 weeks) was more predictable from the vaginal microbiome than late preterm birth (34-37 weeks), both within and across datasets. Integrated differential abundance analysis revealed a highly significant negative association between L. crispatus and PTB that was consistent across almost all studies. The presence of the majority (18 out of 25) of genera was associated with a higher risk of PTB, with L. iners, Prevotella, and Gardnerella showing particularly consistent and significant associations. Some example discrepancies between studies could be attributed to specific methodological differences but not most study-to-study variations in the relationship between the vaginal microbiome and preterm birth. CONCLUSIONS: We believe future studies of the vaginal microbiome and PTB will benefit from a focus on earlier preterm births and improved reporting of specific patient metadata shown to influence the vaginal microbiome and/or birth outcomes.


Subject(s)
Microbiota , Premature Birth , Female , Pregnancy , Infant, Newborn , Humans , RNA, Ribosomal, 16S/genetics , Vagina , Microbiota/genetics , Case-Control Studies
5.
Sci Rep ; 11(1): 21614, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34732757

ABSTRACT

Boundary value problems (BVPs) play a central role in the mathematical analysis of constrained physical systems subjected to external forces. Consequently, BVPs frequently emerge in nearly every engineering discipline and span problem domains including fluid mechanics, electromagnetics, quantum mechanics, and elasticity. The fundamental solution, or Green's function, is a leading method for solving linear BVPs that enables facile computation of new solutions to systems under any external forcing. However, fundamental Green's function solutions for nonlinear BVPs are not feasible since linear superposition no longer holds. In this work, we propose a flexible deep learning approach to solve nonlinear BVPs using a dual-autoencoder architecture. The autoencoders discover an invertible coordinate transform that linearizes the nonlinear BVP and identifies both a linear operator L and Green's function G which can be used to solve new nonlinear BVPs. We find that the method succeeds on a variety of nonlinear systems including nonlinear Helmholtz and Sturm-Liouville problems, nonlinear elasticity, and a 2D nonlinear Poisson equation and can solve nonlinear BVPs at orders of magnitude faster than traditional methods without the need for an initial guess. The method merges the strengths of the universal approximation capabilities of deep learning with the physics knowledge of Green's functions to yield a flexible tool for identifying fundamental solutions to a variety of nonlinear systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...