Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Dev Neurosci ; 84(2): 122-133, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38238938

ABSTRACT

Dietary polyphenol consumption is associated with a wide range of neuroprotective effects by improving mitochondrial function and signaling. Consequently, the use of polyphenol supplementation has been investigated as an approach to prevent neurodevelopmental diseases during gestation; however, the data obtained are still very inconclusive, mostly because of the difficulty of choosing the correct doses and period of administration to properly prevent neurodegenerative diseases without undermining normal brain development. Thus, we aimed to evaluate the effect of naringin supplementation during the third week of gestation on mitochondrial health and signaling in the cerebellum of 21-day-old offspring. The offspring born to naringin-supplemented dams displayed higher mitochondrial mass, membrane potential, and superoxide content in the cerebellum without protein oxidative damage. Such alterations were associated with dynamin-related protein 1 (DRP1) and phosphorylated AKT (p-AKT) downregulation, whereas the sirtuin 3 (SIRT3) levels were strongly upregulated. Our findings suggest that high dietary polyphenol supplementation during gestation may reduce mitochondrial fission and affect mitochondrial dynamics even 3 weeks after delivery via SIRT3 and p-AKT. Although the offspring born to naringin dams did not present neurobehavioral defects, the mitochondrial alterations elicited by naringin may potentially interfere during neurodevelopment and need to be further investigated.


Subject(s)
Flavanones , Sirtuin 3 , Rats , Animals , Female , Pregnancy , Rats, Wistar , Sirtuin 3/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Cerebellum/metabolism , Dietary Supplements , Mitochondria/metabolism , Polyphenols/metabolism
2.
Immunometabolism (Cobham) ; 5(4): e00032, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37849988

ABSTRACT

Macrophages play fundamental roles in atherosclerotic plaque formation, growth, and regression. These cells are extremely plastic and perform different immune functions depending on the stimuli they receive. Initial in vitro studies have identified specific metabolic pathways that are crucial for the proper function of pro-inflammatory and pro-resolving macrophages. However, the plaque microenvironment, especially in the context of insulin resistance and type 2 diabetes, constantly challenges macrophages with several simultaneous inflammatory and metabolic stimuli, which may explain why atherosclerosis is accelerated in diabetic patients. In this mini review, we discuss how macrophage mitochondrial function and metabolism of carbohydrates, lipids, and amino acids may be affected by this complex plaque microenvironment and how risk factors associated with type 2 diabetes alter the metabolic rewiring of macrophages and disease progression. We also briefly discuss current challenges in assessing macrophage metabolism and identify future tools and possible strategies to alter macrophage metabolism to improve treatment options for diabetes-associated atherosclerosis.

3.
Article in English | MEDLINE | ID: mdl-33946307

ABSTRACT

Research has shown the beneficial effects of naringin supplementation to adult rodents, which can ameliorate oxidative stress in disease models. However, evidence has demonstrated that polyphenol supplementation induced detrimental effects when consumed during sensitive periods of development, such as pregnancy. Therefore, we investigated the effect of maternal naringin supplementation during pregnancy on the offspring's cerebral redox status. Pregnant Wistar rats were divided into control and naringin groups and supplemented from gestational day 15 to gestational day 21. On postnatal days 1, 7, and 21, offspring were euthanized, and the prefrontal cortex, hippocampus, striatum, and cerebellum dissected. On postnatal day 1, maternal naringin supplementation positively modulated the pups' brain redox status. On postnatal day 7, a pro-oxidative milieu was observed in the offspring's striatum and cerebellum in a sex-dependent manner, even though the prefrontal cortex and hippocampus were not negatively affected. Besides, the alterations observed on postnatal day 7 did not persist up to weaning. Our findings demonstrated that the effect induced by naringin supplementation in the brain redox status differed according to the period of development in which naringin was consumed since the beneficial effects usually found in the adult rodents became detrimental when the supplementation was applied during pregnancy.


Subject(s)
Brain , Prenatal Exposure Delayed Effects , Animals , Dietary Supplements , Female , Flavanones , Oxidation-Reduction , Pregnancy , Rats , Rats, Wistar
4.
J Dev Orig Health Dis ; 11(5): 521-532, 2020 10.
Article in English | MEDLINE | ID: mdl-32631472

ABSTRACT

The Developmental Origins of Health and Disease (DOHaD) states that intrauterine maternal environment influences postnatal life by programming offspring's metabolism. Intrauterine milieu induced by exercise during pregnancy promotes long-lasting benefits to the offspring's health and seems to offer some resistance against chronic diseases in adult life. Alzheimer's disease is a public health concern with limited treatment options. In the present study, we assessed the potential of maternal exercise during pregnancy in long-term programming of young adult male rat offspring's cerebellar metabolism in conferring neuroprotection against amyloid-ß (Aß) neurotoxicity. Female Wistar rats were submitted to a swimming protocol 1 week prior mating and throughout pregnancy (five sessions/a week lasting 30 min). Aß oligomers were infused bilaterally in the brain ventricles of 60-day-old male offspring. Fourteen days after surgery, we measured parameters related to redox state, mitochondrial function, and the immunocontent of proteins related to synaptic function. We found that maternal exercise during pregnancy attenuated several parameters in the offspring's male rat cerebellum, such as the reactive species rise, the increase of inducible nitric oxide synthase immunocontent and tau phosphorylation induced by Aß oligomers, increased mitochondrial fission indicated by dynamin-related protein 1 (DRP1), and protein oxidation identified by carbonylation. Strikingly, we find that maternal exercise promotes changes in the rat offspring's cerebellum that are still evident in young adult life. These favorable neurochemical changes in offspring's cerebellum induced by maternal exercise may contribute to a protective phenotype against Aß-induced neurotoxicity in young adult male rat offspring.


Subject(s)
Amyloid beta-Peptides/metabolism , Cerebellum/pathology , Physical Conditioning, Animal/physiology , Prenatal Exposure Delayed Effects/prevention & control , Animals , Cerebellum/metabolism , Disease Models, Animal , Female , Humans , Male , Oxidation-Reduction , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/pathology , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...