Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Planta ; 222(6): 1028-40, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16231153

ABSTRACT

Tomato MAF1 (LeMAF1) is a plant-specific, nuclear envelope (NE)-associated protein. It is the founding member of a group of WPP domain-containing, NE-associated proteins. This group includes the Arabidopsis WPP family, which is involved in cell division, as well as plant RanGAPs. In addition to its NE localization, LeMAF1 accumulates in speckles in the cytoplasm. Here, we show that the LeMAF1-containing speckles are components of the Golgi apparatus. A novel tomato coiled-coil protein was identified that specifically binds to LeMAF1. Tomato WPP domain-associated protein (LeWAP) interacts in yeast and in vitro through its coiled-coil domain with several WPP-domain containing proteins, including AtRanGAP1 and the WPP family (LeMAF, WPP1 and WPP2). Like LeMAF1, LeWAP is localized at the Golgi. Moreover, we present data showing that Arabidopsis WAP is necessary for the existence of a multi-protein complex containing WPP2.


Subject(s)
Golgi Apparatus/metabolism , Matrix Attachment Region Binding Proteins/metabolism , Membrane Proteins/metabolism , Plant Proteins/metabolism , Solanum lycopersicum/metabolism , Amino Acid Sequence , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Blotting, Western , Cell Division , GTPase-Activating Proteins/metabolism , Green Fluorescent Proteins/analysis , Membrane Proteins/chemistry , Microscopy, Confocal , Molecular Sequence Data , Mutagenesis, Insertional , Nuclear Envelope/metabolism , Protein Binding , Protein Interaction Mapping , Protein Structure, Tertiary , Protein Transport , Nicotiana/cytology , Two-Hybrid System Techniques
2.
Chromosome Res ; 11(1): 3-21, 2003.
Article in English | MEDLINE | ID: mdl-12675302

ABSTRACT

Several repetitive sequences of the genome of Beta procumbens Chr. Sm., a wild beet species of the section Procumbentes of the genus Beta have been isolated. According to their genomic organization, the repeats were assigned to satellite DNA and families of dispersed DNA sequences. The tandem repeats are 229-246 bp long and belong to an AluI restriction satellite designated pAp11. Monomers of this satellite DNA form subfamilies which can be distinguished by the divergence or methylation of an internal restriction site. The satellite is amplified in the section Procumbentes, but is also found in species of the section Beta including cultivated beet (Beta vulgaris). The existence of the pAp11 satellite in distantly related species suggests that the AluI sequence family is an ancient component of Beta genomes and the ancestor of the diverged satellite subfamily pEV4 in B. vulgaris. Comparative fluorescent in-situ hybridization revealed remarkable differences in the chromosomal position between B. procumbens and B. vulgaris, indicating that the pAp11 and pEV4 satellites were most likely involved in the expansion or rearrangement of the intercalary B. vulgaris heterochromatin. Furthermore, we describe the molecular structure, and genomic and chromosomal organization of two repetitive DNA families which were designated pAp4 and pAp22 and are 1354 and 582 bp long, respectively. The families consist of sequence elements which are widely dispersed along B. procumbens chromosomes with local clustering and exclusion from distal euchromatic regions. FISH on meiotic chromosomes showed that both dispersed repeats are colocalized in some chromosomal regions. The interspersion of repeats of the pAp4 and pAp22 family was studied by PCR and enabled the determination of repeat flanking sequences. Sequence analysis revealed that pAp22 is either derived from or part of a long terminal repeat (LTR) of an Athila-like retrotransposon. Southern analysis and FISH with pAp4 and pAp22 showed that both dispersed repeats are species-specific and can be used as DNA probes to discriminate parental genomes in interspecific hybrids. This was tested in the sugar beet hybrid PRO1 which contains a small B. procumbens chromosome fragment.


Subject(s)
Alu Elements , Chenopodiaceae/genetics , DNA, Satellite , Genome, Plant , Base Sequence , Beta vulgaris/genetics , In Situ Hybridization , Molecular Sequence Data , Sequence Alignment
3.
J Exp Bot ; 54(385): 1133-41, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12654864

ABSTRACT

A cDNA for a novel plant protein was isolated from tomato. Nuclear Matrix Protein 1 (NMP1) is a ubiquitously expressed 36 kDa protein, which has no homologues in animals and fungi, but is highly conserved among flowering and non-flowering plants, including gymnosperms, moss, and the liverwort Marchantia polymorpha. NMP1 is predominantly alpha-helical with multiple stretches of short amphipathic regions. Cell fractionation, immunofluorescence, and GFP localization experiments showed that NMP1 is located both in the cytoplasm and nucleus and that the nuclear fraction is associated with the nuclear matrix. NMP1 is a candidate for a plant-specific structural protein with a function both in the nucleus and cytoplasm.


Subject(s)
Conserved Sequence/genetics , Nuclear Matrix-Associated Proteins/genetics , Nuclear Matrix/metabolism , Plant Proteins/genetics , Solanum lycopersicum/genetics , Amino Acid Sequence , Base Sequence , Cloning, Molecular , DNA, Complementary/chemistry , DNA, Complementary/drug effects , Molecular Sequence Data , Nuclear Matrix-Associated Proteins/metabolism , Plant Proteins/metabolism , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Two-Hybrid System Techniques
4.
BMC Genomics ; 3: 9, 2002 Apr 09.
Article in English | MEDLINE | ID: mdl-11972898

ABSTRACT

BACKGROUND: Animal and yeast proteins containing long coiled-coil domains are involved in attaching other proteins to the large, solid-state components of the cell. One subgroup of long coiled-coil proteins are the nuclear lamins, which are involved in attaching chromatin to the nuclear envelope and have recently been implicated in inherited human diseases. In contrast to other eukaryotes, long coiled-coil proteins have been barely investigated in plants. RESULTS: We have searched the completed Arabidopsis genome and have identified a family of structurally related long coiled-coil proteins. Filament-like plant proteins (FPP) were identified by sequence similarity to a tomato cDNA that encodes a coiled-coil protein which interacts with the nuclear envelope-associated protein, MAF1. The FPP family is defined by four novel unique sequence motifs and by two clusters of long coiled-coil domains separated by a non-coiled-coil linker. All family members are expressed in a variety of Arabidopsis tissues. A homolog sharing the structural features was identified in the monocot rice, indicating conservation among angiosperms. CONCLUSION: Except for myosins, this is the first characterization of a family of long coiled-coil proteins in plants. The tomato homolog of the FPP family binds in a yeast two-hybrid assay to a nuclear envelope-associated protein. This might suggest that FPP family members function in nuclear envelope biology. Because the full Arabidopsis genome does not appear to contain genes for lamins, it is of interest to investigate other long coiled-coil proteins, which might functionally replace lamins in the plant kingdom.

SELECTION OF CITATIONS
SEARCH DETAIL
...