Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 111(5): 053002, 2013 Aug 02.
Article in English | MEDLINE | ID: mdl-23952392

ABSTRACT

We present a method to measure the decay rate of the first excited vibrational state of polar molecular ions that are part of a Coulomb crystal in a cryogenic linear Paul trap. Specifically, we have monitored the decay of the |ν = 1, J = 1)(X) towards the |ν = 0, J = 0)(X) level in MgH+ by saturated laser excitation of the |ν = 0, J = 2)(X)-|ν = 1, J = 1)(X) transition followed by state selective resonance enhanced two-photon dissociation out of the |ν = 0, J=2)(X) level. The experimentally observed rate of 6.32(0.69) s(-1) is in excellent agreement with the theory value of 6.13(0.03) s(-1) (this Letter). The technique enables the determination of decay rates, and thus absorption strengths, with an accuracy at the few percent level.

2.
Rev Sci Instrum ; 83(8): 083115, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22938282

ABSTRACT

Storage and cooling of highly charged ions require ultra-high vacuum levels obtainable by means of cryogenic methods. We have developed a linear Paul trap operating at 4 K capable of very long ion storage times of about 30 h. A conservative upper bound of the H(2) partial pressure of about 10(-15) mbar (at 4 K) is obtained from this. External ion injection is possible and optimized optical access for lasers is provided, while exposure to black body radiation is minimized. First results of its operation with atomic and molecular ions are presented. An all-solid state laser system at 313 nm has been set up to provide cold Be(+) ions for sympathetic cooling of highly charged ions.

SELECTION OF CITATIONS
SEARCH DETAIL
...