Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Child Adolesc Psychiatry Ment Health ; 17(1): 73, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37328889

ABSTRACT

BACKGROUND: Selective serotonin reuptake inhibitors (SSRIs) are the most frequently prescribed antidepressants in pregnancy. Animal and some clinical studies have suggested potential increases in depression and anxiety following prenatal SSRI exposure, but the extent to which these are driven by the medication remains unclear. We used Danish population data to test associations between maternal SSRI use during pregnancy and children outcomes up to age 22. METHODS: We prospectively followed 1,094,202 single-birth Danish children born 1997-2015. The primary exposure was ≥ 1 SSRI prescription filled during pregnancy; the primary outcome, first diagnosis of a depressive, anxiety, or adjustment disorder, or redeemed prescription for an antidepressant medication. We used propensity score weights to adjust potential confounders, and incorporated data from the Danish National Birth Cohort (1997-2003) to further quantify potential residual confounding by subclinical factors. RESULTS: The final dataset included 15,651 exposed and 896,818 unexposed, children. After adjustments, SSRI-exposed had higher rates of the primary outcome than those of mothers who either did not use an SSRI (HR = 1.55 [95%CI:1.44,1.67] or discontinued the SSRI use ≥ 3 months prior to conception (HR = 1.23 [1.13,1.34]). Age of onset was earlier among exposed (9 [IQR:7-13] years) versus unexposed (12 [IQR:12-17] years) children (p < 0.01). Paternal SSRI use in the absence of maternal use during the index pregnancy (HR = 1.46 [1.35,1.58]) and maternal SSRI use only after pregnancy (HR = 1.42 [1.35,1.49]) were each also associated with these outcomes. CONCLUSIONS: While SSRI exposure was associated with increased risk in the children, this risk may be driven at least partly by underlying severity of maternal illness or other confounding factors.

2.
Sci Rep ; 11(1): 22852, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34819526

ABSTRACT

Depression and anxiety, two of the most common mental health disorders, share common symptoms and treatments. Most pharmacological agents available to treat these disorders target monoamine systems. Currently, finding the most effective treatment for an individual is a process of trial and error. To better understand how disease etiology may predict treatment response, we studied mice exposed developmentally to the selective serotonin reuptake inhibitor (SSRI) fluoxetine (FLX). These mice show the murine equivalent of anxiety- and depression-like symptoms in adulthood and here we report that these mice are also behaviorally resistant to the antidepressant-like effects of adult SSRI administration. We investigated whether tianeptine (TIA), which exerts its therapeutic effects through agonism of the mu-opioid receptor instead of targeting monoaminergic systems, would be more effective in this model. We found that C57BL/6J pups exposed to FLX from postnatal day 2 to 11 (PNFLX, the mouse equivalent in terms of brain development to the human third trimester) showed increased avoidant behaviors as adults that failed to improve, or were even exacerbated, by chronic SSRI treatment. By contrast, avoidant behaviors in these same mice were drastically improved following chronic treatment with TIA. Overall, this demonstrates that TIA may be a promising alternative treatment for patients that fail to respond to typical antidepressants, especially in patients whose serotonergic system has been altered by in utero exposure to SSRIs.


Subject(s)
Antidepressive Agents, Second-Generation/toxicity , Antidepressive Agents, Tricyclic/pharmacology , Avoidance Learning/drug effects , Behavior, Animal/drug effects , Brain/drug effects , Fluoxetine/toxicity , Selective Serotonin Reuptake Inhibitors/toxicity , Thiazepines/pharmacology , Animals , Animals, Newborn , Brain/growth & development , Feeding Behavior/drug effects , Mice, 129 Strain , Mice, Inbred C57BL , Open Field Test/drug effects
3.
Article in English | MEDLINE | ID: mdl-33487578

ABSTRACT

BACKGROUND: Major depressive disorder (MDD) is associated with aberrant limbic neural responses to emotional stimuli. We assessed how self-generated emotions modulate trial-by-trial limbic activity and whether this brain-emotion synchrony varies by familial MDD risk (regardless of personal MDD history) and neuroticism. METHODS: Participants (n = 74, mean age = 34 years) were later-generation family members of depressed or nondepressed probands as part of a longitudinal cohort study. Using an emotion induction task, we examined participant-specific modulation of anatomically defined limbic neurobiology. Neuroticism, mental health, and familial parenting style were assessed, and MDD assessments were routinely collected throughout the previous longitudinal assessments of the study. RESULTS: Participant-specific emotional arousal modulated amygdala and hippocampal activity. Lasso regression identified attenuated right amygdala arousal modulation as being relatively more associated with neuroticism (even though neuroticism was not associated with arousal ratings). Attenuated amygdala modulation and neuroticism were significantly more likely in offspring of parents with MDD. Parental MDD, but not personal history of MDD, predicted attenuated amygdala modulation. CONCLUSIONS: Attenuated right amygdala modulation by emotional arousal was associated with neuroticism, indicating that the amygdala was less synchronous with emotional experiences in individuals higher in neuroticism. This neurophenotype was predicted by participants' parental MDD history but not by their own MDD history; that is, it was observed in unaffected and affected offspring of parents with MDD. These data suggest that weak amygdala-emotion synchrony may be a predisposing risk factor for MDD, rather than a result of the illness, and they suggest pathways by which this risk factor for depression is passed intergenerationally.


Subject(s)
Depressive Disorder, Major , Adult , Amygdala , Depression , Emotions , Humans , Longitudinal Studies , Magnetic Resonance Imaging
4.
Mol Psychiatry ; 25(12): 3304-3321, 2020 12.
Article in English | MEDLINE | ID: mdl-30120415

ABSTRACT

Serotonin (5-HT) selective reuptake inhibitors (SSRIs) are widely used in the treatment of depression and anxiety disorders, but responsiveness is uncertain and side effects often lead to discontinuation. Side effect profiles suggest that SSRIs reduce dopaminergic (DAergic) activity, but specific mechanistic insight is missing. Here we show in mice that SSRIs impair motor function by acting on 5-HT2C receptors in the substantia nigra pars reticulata (SNr), which in turn inhibits nigra pars compacta (SNc) DAergic neurons. SSRI-induced motor deficits can be reversed by systemic or SNr-localized 5-HT2C receptor antagonism. SSRIs induce SNr hyperactivity and SNc hypoactivity that can also be reversed by systemic 5-HT2C receptor antagonism. Optogenetic inhibition of SNc DAergic neurons mimics the motor deficits due to chronic SSRI treatment, whereas local SNr 5-HT2C receptor antagonism or optogenetic activation of SNc DAergic neurons reverse SSRI-induced motor deficits. Lastly, we find that 5-HT2C receptor antagonism potentiates the antidepressant and anxiolytic effects of SSRIs. Together our findings demonstrate opposing roles for 5-HT2C receptors in the effects of SSRIs on motor function and affective behavior, highlighting the potential benefits of 5-HT2C receptor antagonists for both reduction of motor side effects of SSRIs and augmentation of therapeutic antidepressant and anxiolytic effects.


Subject(s)
Receptor, Serotonin, 5-HT2C , Selective Serotonin Reuptake Inhibitors , Animals , Basal Ganglia , Dopamine , Mice , Serotonin , Substantia Nigra
5.
Proc Natl Acad Sci U S A ; 116(22): 11028-11037, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31072928

ABSTRACT

Mitochondria in neurons, in addition to their primary role in bioenergetics, also contribute to specialized functions, including regulation of synaptic transmission, Ca2+ homeostasis, neuronal excitability, and stress adaptation. However, the factors that influence mitochondrial biogenesis and function in neurons remain poorly elucidated. Here, we identify an important role for serotonin (5-HT) as a regulator of mitochondrial biogenesis and function in rodent cortical neurons, via a 5-HT2A receptor-mediated recruitment of the SIRT1-PGC-1α axis, which is relevant to the neuroprotective action of 5-HT. We found that 5-HT increased mitochondrial biogenesis, reflected through enhanced mtDNA levels, mitotracker staining, and expression of mitochondrial components. This resulted in higher mitochondrial respiratory capacity, oxidative phosphorylation (OXPHOS) efficiency, and a consequential increase in cellular ATP levels. Mechanistically, the effects of 5-HT were mediated via the 5-HT2A receptor and master modulators of mitochondrial biogenesis, SIRT1 and PGC-1α. SIRT1 was required to mediate the effects of 5-HT on mitochondrial biogenesis and function in cortical neurons. In vivo studies revealed that 5-HT2A receptor stimulation increased cortical mtDNA and ATP levels in a SIRT1-dependent manner. Direct infusion of 5-HT into the neocortex and chemogenetic activation of 5-HT neurons also resulted in enhanced mitochondrial biogenesis and function in vivo. In cortical neurons, 5-HT enhanced expression of antioxidant enzymes, decreased cellular reactive oxygen species, and exhibited neuroprotection against excitotoxic and oxidative stress, an effect that required SIRT1. These findings identify 5-HT as an upstream regulator of mitochondrial biogenesis and function in cortical neurons and implicate the mitochondrial effects of 5-HT in its neuroprotective action.


Subject(s)
Mitochondria , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Receptor, Serotonin, 5-HT2A , Serotonin , Sirtuin 1 , Animals , Cerebral Cortex/cytology , Male , Mice, Transgenic , Mitochondria/drug effects , Mitochondria/metabolism , Neurons/cytology , Neurons/physiology , Organelle Biogenesis , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Rats, Sprague-Dawley , Receptor, Serotonin, 5-HT2A/genetics , Receptor, Serotonin, 5-HT2A/metabolism , Serotonin/metabolism , Serotonin/pharmacology , Sirtuin 1/genetics , Sirtuin 1/metabolism
6.
Neuronal Signal ; 3(1): NS20180205, 2019 Mar.
Article in English | MEDLINE | ID: mdl-32714597

ABSTRACT

Background: Acute treatment with the selective serotonin reuptake inhibitor (SSRI), fluoxetine (Flx), induces anxiety-like behavioral effects. The serotonin2A receptor (5-HT2A) is implicated in the modulation of anxiety-like behavior, however its contribution to the anxiogenic effects of acute Flx remains unclear. Here, we examined the role of the 5-HT2A receptor in the effects of acute Flx on anxiety-like behavior, serum corticosterone levels, neural activation and immediate early gene (IEG) expression in stress-responsive brain regions, using 5-HT2A receptor knockout (5-HT2A -/-) mice of both sexes. Methods: 5-HT2A -/- and wild-type (WT) male and female mice received a single administration of Flx or vehicle, and were examined for anxiety-like behavior, serum corticosterone levels, FBJ murine osteosarcoma viral oncogene homolog peptide (c-Fos) positive cell numbers in stress-responsive brain regions of the hypothalamus and prefrontal cortex (PFC), and PFC IEG expression. Results: The increased anxiety-like behavior and enhanced corticosterone levels evoked by acute Flx were unaltered in 5-HT2A -/- mice of both sexes. 5-HT2A -/- female mice exhibited a diminished neural activation in the hypothalamus in response to acute Flx. Further, 5-HT2A -/- male, but not female, mice displayed altered baseline expression of several IEGs (brain-derived neurotrophic factor (Bdnf), Egr2, Egr4, FBJ osteosarcoma gene (Fos), FBJ murine osteosarcoma viral oncogene homolog B (Fosb), Fos-like antigen 2 (Fosl2), Homer scaffolding protein (Homer) 1-3 (Homer1-3), Jun proto-oncogene (Jun)) in the PFC. Conclusion: Our results indicate that the increased anxiety and serum corticosterone levels evoked by acute Flx are not influenced by 5-HT2A receptor deficiency. However, the loss of function of the 5-HT2A receptor alters the degree of neural activation of the paraventricular nucleus (PVN) of the hypothalamus in response to acute Flx, and baseline expression of several IEGs in the PFC in a sexually dimorphic manner.

7.
JAMA Pediatr ; 172(6): 525-533, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29630692

ABSTRACT

Importance: Selective serotonin reuptake inhibitor (SSRI) use among pregnant women is increasing, yet the association between prenatal SSRI exposure and fetal neurodevelopment is poorly understood. Animal studies show that perinatal SSRI exposure alters limbic circuitry and produces anxiety and depressive-like behaviors after adolescence, but literature on prenatal SSRI exposure in humans is limited and mixed. Objective: To examine associations between prenatal SSRI exposure and brain development using structural and diffusion magnetic resonance imaging (MRI). Design, Setting, and Participants: A cohort study conducted at Columbia University Medical Center and New York State Psychiatric Institute included 98 infants: 16 with in utero SSRI exposure, 21 with in utero untreated maternal depression exposure, and 61 healthy controls. Data were collected between January 6, 2011, and October 25, 2016. Exposures: Selective serotonin reuptake inhibitors and untreated maternal depression. Main Outcomes and Measures: Gray matter volume estimates using structural MRI with voxel-based morphometry and white matter structural connectivity (connectome) using diffusion MRI with probabilistic tractography. Results: The sample included 98 mother (31 [32%] white, 26 [27%] Hispanic/Latina, 26 [27%] black/African American, 15 [15%] other) and infant (46 [47%] boys, 52 [53%] girls) dyads. Mean (SD) age of the infants at the time of the scan was 3.43 (1.50) weeks. Voxel-based morphometry showed significant gray matter volume expansion in the right amygdala (Cohen d = 0.65; 95% CI, 0.06-1.23) and right insula (Cohen d = 0.86; 95% CI, 0.26-1.14) in SSRI-exposed infants compared with both healthy controls and infants exposed to untreated maternal depression (P < .05; whole-brain correction). In connectome-level analysis of white matter structural connectivity, the SSRI group showed a significant increase in connectivity between the right amygdala and the right insula with a large effect size (Cohen d = 0.99; 95% CI, 0.40-1.57) compared with healthy controls and untreated depression (P < .05; whole connectome correction). Conclusions and Relevance: Our findings suggest that prenatal SSRI exposure has an association with fetal brain development, particularly in brain regions critical to emotional processing. The study highlights the need for further research on the potential long-term behavioral and psychological outcomes of these neurodevelopmental changes.


Subject(s)
Brain/growth & development , Depression/drug therapy , Diffusion Magnetic Resonance Imaging/methods , Maternal Exposure/adverse effects , Pregnancy Complications/drug therapy , Prenatal Exposure Delayed Effects/diagnosis , Selective Serotonin Reuptake Inhibitors/adverse effects , Adolescent , Adult , Brain/drug effects , Female , Follow-Up Studies , Gestational Age , Humans , Infant , Infant, Newborn , Male , Middle Aged , Organ Size , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Retrospective Studies , Selective Serotonin Reuptake Inhibitors/therapeutic use , Young Adult
8.
Birth Defects Res ; 109(12): 924-932, 2017 Jul 17.
Article in English | MEDLINE | ID: mdl-28714607

ABSTRACT

Development passes through sensitive periods, during which plasticity allows for genetic and environmental factors to exert indelible influence on the maturation of the organism. In the context of central nervous system (CNS) development, such sensitive periods shape the formation of neuro-circuits that mediate, regulate, and control behavior. This general mechanism allows for development to be guided by both the genetic blueprint, as well as the environmental context. While allowing for adaptation, such sensitive periods are also windows of vulnerability during which external and internal factors can confer risk to brain disorders by derailing adaptive developmental programs. Our group has been particularly interested in developmental periods that are sensitive to serotonin (5-HT) signaling, and impact behavior and cognition relevant to psychiatry. Specifically, we review a 5-HT-sensitive period that impacts fronto-limbic system development, resulting in cognitive, anxiety, and depression-related behaviors. We discuss preclinical data to establish biological plausibility and mechanistic insights. We also summarize epidemiological findings that underscore the potential public health implications resulting from the current practice of prescribing 5-HT reuptake inhibiting antidepressants during pregnancy. These medications enter the fetal circulation, likely perturb 5-HT signaling in the brain, and may be affecting circuit maturation in ways that parallel our findings in the developing rodent brain. More research is needed to better disambiguate the dual effects of maternal symptoms on fetal and child development from the effects of 5-HT reuptake inhibitors on clinical outcomes in the offspring. Birth Defects Research 109:924-932, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Brain/drug effects , Serotonin and Noradrenaline Reuptake Inhibitors/adverse effects , Serotonin and Noradrenaline Reuptake Inhibitors/pharmacokinetics , Animals , Antidepressive Agents/pharmacology , Anxiety/chemically induced , Brain/embryology , Child , Child Development/drug effects , Cognition/drug effects , Depression/chemically induced , Depressive Disorder/drug therapy , Disease Models, Animal , Female , Humans , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/metabolism , Problem Solving/drug effects , Receptors, Serotonin, 5-HT1 , Serotonin/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacology
9.
Neurobiol Stress ; 7: 89-102, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28626787

ABSTRACT

Chronic stress enhances risk for psychiatric disorders, and in animal models is known to evoke depression-like behavior accompanied by perturbed neurohormonal, metabolic, neuroarchitectural and transcriptional changes. Serotonergic neurotransmission, including serotonin2A (5-HT2A) receptors, have been implicated in mediating specific aspects of stress-induced responses. Here we investigated the influence of chronic unpredictable stress (CUS) on depression-like behavior, serum metabolic measures, and gene expression in stress-associated neurocircuitry of the prefrontal cortex (PFC) and hippocampus in 5-HT2A receptor knockout (5-[Formula: see text]) and wild-type mice of both sexes. While 5-[Formula: see text] male and female mice exhibited a baseline reduced anxiety-like state, this did not alter the onset or severity of behavioral despair during and at the cessation of CUS, indicating that these mice can develop stress-evoked depressive behavior. Analysis of metabolic parameters in serum revealed a CUS-evoked dyslipidemia, which was abrogated in 5-[Formula: see text] female mice with a hyperlipidemic baseline phenotype. 5-[Formula: see text] male mice in contrast did not exhibit such a baseline shift in their serum lipid profile. Specific stress-responsive genes (Crh, Crhr1, Nr3c1, and Nr3c2), trophic factors (Bdnf, Igf1) and immediate early genes (IEGs) (Arc, Fos, Fosb, Egr1-4) in the PFC and hippocampus were altered in 5-[Formula: see text] mice both under baseline and CUS conditions. Our results support a role for the 5-HT2A receptor in specific metabolic and transcriptional, but not behavioral, consequences of CUS, and highlight that the contribution of the 5-HT2A receptor to stress-evoked changes is sexually dimorphic.

10.
Psychiatry Res ; 253: 211-219, 2017 07.
Article in English | MEDLINE | ID: mdl-28391138

ABSTRACT

The role of the serotonin transporter promoter-linked polymorphism (5-HTTLPR) in psychiatric disease remains unclear. Behavioral traits could serve as alternative outcomes that are stable, precede psychopathology, and capture more sub-clinical variation. We test associations between 5-HTTLPR and (1) behavioral traits and (2) clinical diagnoses of anxiety and depression. Second and third generation participants (N=203, 34.2±13.8 years, 54% female) at high- or low- familial risk for depression (where risk was defined by the presence of major depression in the 1st generation) were assessed longitudinally using the Schedule for Affective Disorders and Schizophrenia-lifetime interview, Barratt Impulsiveness Scale-11, Buss-Perry Aggression Questionnaire, and the NEO-Five Factor Inventory. High (but not low)-risk offspring with two risk (short, s) alleles had higher impulsivity (+13%), hostility (+31%) and neuroticism (+23%). SS was associated higher rates of panic (OR=7.05 [2.44, 20.38], p=0.0003) and phobic (OR=2.68[1.04, 6.93], p=0.04), but not other disorders. Impulsivity accounted for 16% of associations between 5-HTTLPR and panic, and 52% of association between 5-HTTLPR and phobias. We show that 5-HTTLPR predicts higher impulsivity, hostility, and neuroticism, and that impulsivity could serve as a useful independent outcome or intermediary phenotype in genetic studies of anxiety.


Subject(s)
Anxiety Disorders/genetics , Anxiety/genetics , Family/psychology , Serotonin Plasma Membrane Transport Proteins/genetics , Adolescent , Adult , Aggression , Alleles , Child , Depression/genetics , Depressive Disorder, Major/genetics , Female , Genotype , Hostility , Humans , Impulsive Behavior , Male , Middle Aged , Phenotype , Polymorphism, Genetic , Promoter Regions, Genetic , Risk Factors , Surveys and Questionnaires , Young Adult
11.
Gene Expr Patterns ; 22(2): 46-53, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27818290

ABSTRACT

The glutamatergic system directs central nervous system (CNS) neuronal activity and may underlie various neuropsychiatric disorders. Glutamate transmits its effects through multiple receptor classes. Class II metabotropic glutamate receptors, mGlu2 and mGlu3, play an important role in regulating synaptic release of different neurotransmitter systems and consequently modulate signaling across several neuronal subtypes. Drugs targeting mGlu2 and mGlu3 are seen as potential therapeutics for various psychiatric and neurological disorders, and defining their expression through development can aid in understanding their distinct function. Here, non-radioactive in situ hybridization was used to detect mGlu2 and mGlu3 mRNA in the CNS of 129SvEv mice at PN1, PN8, PN25, PN40, and PN100. At PN1, mGlu2 and mGlu3 are strongly expressed cortically, most notably in layer III and V. Subcortically, mGlu2 is detected in thalamic nuclei; mGlu3 is highly expressed in the striatum. By PN8, the most notable changes are in hippocampus and cortex, with mGlu2 densely expressed in the dentate gyrus, and showing increased cortical levels especially in medial cortex. At PN8, mGlu3 is observed in cortex and striatum, with highest levels detected in reticular thalamic nucleus. At PN25 patterns of expression approximated those observed across adulthood (PN40 & PN100): mGlu2 expression was high in cortex and dentate gyrus while mGlu3 showed expression in the reticular thalamic nucleus, cortex, and striatum. These studies provide a foundation for future research seeking to parse out the roles of mGlu2 from mGlu3, paving the way for better understanding of how these receptors regulate activity in the brain.


Subject(s)
Gene Expression Regulation, Developmental/genetics , Hippocampus/metabolism , Receptors, Metabotropic Glutamate/genetics , Animals , Central Nervous System/metabolism , Cerebellar Cortex/metabolism , Dentate Gyrus/metabolism , Mice , Mice, Knockout , Receptors, Metabotropic Glutamate/biosynthesis
12.
JAMA Psychiatry ; 73(11): 1163-1170, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27732704

ABSTRACT

IMPORTANCE: Speech/language, scholastic, and motor disorders are common in children. It is unknown whether exposure to selective serotonin reuptake inhibitors (SSRIs) during pregnancy influences susceptibility to these disorders. OBJECTIVE: To examine whether SSRI exposure during pregnancy is associated with speech/language, scholastic, and motor disorders in offspring up to early adolescence. DESIGN, SETTING, AND PARTICIPANTS: This prospective birth cohort study examined national population-based register data in Finland from 1996 to 2010. The sampling frame includes 845 345 pregnant women and their singleton offspring with data on maternal use of antidepressants and depression-related psychiatric disorders during pregnancy. EXPOSURES: There were 3 groups of offspring: 15 596 were in the SSRI-exposed group, ie, had mothers diagnosed as having depression-related psychiatric disorders with a history of purchasing SSRIs during pregnancy; 9537 were in the unmedicated group, ie, had mothers diagnosed as having depression-related psychiatric disorders without a history of purchasing SSRIs during pregnancy; and 31 207 were in the unexposed group, ie, had mothers without a psychiatric diagnosis or a history of purchasing SSRIs. MAIN OUTCOMES AND MEASURES: Cumulative incidence of speech/language, scholastic, or motor disorders (829, 187, and 285 instances, respectively) from birth to 14 years. All hypotheses tested were formulated before data collection. RESULTS: Of the 56 340 infants included in the final cohort, 28 684 (50.9%) were male and 48 782 (86.6%) were 9 years or younger. The mean (SD) ages of children at diagnosis were 4.43 (1.67), 3.55 (2.67), and 7.73 (2.38) for speech/language, scholastic, and motor disorders, respectively. Offspring of mothers who purchased SSRIs at least twice during pregnancy had a significant 37% increased risk of speech/language disorders compared with offspring in the unmedicated group. The cumulative hazard of speech/language disorders was 0.0087 in the SSRI-exposed group vs 0.0061 in the unmedicated group (hazard ratio, 1.37; 95% CI, 1.11-1.70; P = .004). There was a significantly increased risk of these disorders in offspring in the SSRI-exposed and unmedicated groups compared with offspring in the unexposed group. For scholastic and motor disorders, there were no differences between offspring in the SSRI-exposed group and in the unmedicated group. CONCLUSIONS AND RELEVANCE: Exposure to SSRIs during pregnancy was associated with an increased risk of speech/language disorders. This finding may have implications for understanding associations between SSRIs and child development.


Subject(s)
Antidepressive Agents/adverse effects , Depressive Disorder/drug therapy , Language Development Disorders/chemically induced , Learning Disabilities/chemically induced , Motor Disorders/chemically induced , Pregnancy Complications/drug therapy , Prenatal Exposure Delayed Effects/chemically induced , Selective Serotonin Reuptake Inhibitors/adverse effects , Speech Disorders/chemically induced , Antidepressive Agents/therapeutic use , Case-Control Studies , Child , Child, Preschool , Cohort Studies , Depressive Disorder/epidemiology , Female , Finland , Humans , Language Development Disorders/diagnosis , Language Development Disorders/epidemiology , Learning Disabilities/diagnosis , Male , Motor Disorders/diagnosis , Motor Disorders/epidemiology , Pregnancy , Pregnancy Complications/epidemiology , Prenatal Exposure Delayed Effects/psychology , Proportional Hazards Models , Prospective Studies , Risk , Selective Serotonin Reuptake Inhibitors/therapeutic use , Speech Disorders/diagnosis , Speech Disorders/epidemiology
13.
J Am Acad Child Adolesc Psychiatry ; 55(5): 359-66, 2016 05.
Article in English | MEDLINE | ID: mdl-27126849

ABSTRACT

OBJECTIVE: To investigate the impact of gestational exposure to selective serotonin reuptake inhibitors (SSRIs) on offspring neurodevelopment. METHOD: This is a cohort study using national register data in Finland between the years 1996 and 2010. Pregnant women and their offspring were categorized into 4 groups: SSRI exposed (n = 15,729); exposed to psychiatric disorder, no antidepressants (n = 9,651); exposed to SSRIs only before pregnancy (n = 7,980); and unexposed to antidepressants and psychiatric disorders (n = 31,394). We investigated the cumulative incidence of offspring diagnoses of depression, anxiety, autism spectrum disorder (ASD), and attention-deficit/hyperactivity disorder (ADHD) for the 4 groups from birth to 14 years, adjusting for confounders. RESULTS: The cumulative incidence of depression among offspring exposed prenatally to SSRIs was 8.2% (95% CI = 3.1-13.3%) by age 14.9 years, compared with 1.9% (95% CI = 0.9-2.9%) in the psychiatric disorder, no medication group (adjusted hazard ratio [HR] = 1.78; 95% CI = 1.12-2.82; p = .02) and to 2.8% (95% CI = 1.4-4.3%) in the SSRI discontinued group (HR = 1.84; 95% CI = 1.14-2.97; p = .01). Rates of anxiety, ASD, and ADHD diagnoses were comparable to rates in offspring of mothers with a psychiatric disorder but no medication during pregnancy. Comparing SSRI exposed to unexposed individuals, the HRs were significantly elevated for each outcome. CONCLUSION: Prenatal SSRI exposure was associated with increased rates of depression diagnoses in early adolescence but not with ASD or ADHD. Until confirmed, these findings must be balanced against the substantial adverse consequences of untreated maternal depression.


Subject(s)
Anxiety Disorders/chemically induced , Attention Deficit Disorder with Hyperactivity/chemically induced , Autism Spectrum Disorder/chemically induced , Bipolar Disorder/drug therapy , Depressive Disorder/chemically induced , Maternal Exposure/statistics & numerical data , Prenatal Exposure Delayed Effects/chemically induced , Selective Serotonin Reuptake Inhibitors/adverse effects , Adolescent , Adult , Anxiety Disorders/drug therapy , Anxiety Disorders/epidemiology , Attention Deficit Disorder with Hyperactivity/epidemiology , Autism Spectrum Disorder/epidemiology , Bipolar Disorder/epidemiology , Depressive Disorder/drug therapy , Depressive Disorder/epidemiology , Female , Finland/epidemiology , Follow-Up Studies , Humans , Pregnancy , Prenatal Exposure Delayed Effects/epidemiology , Registries , Young Adult
14.
J Pharmacol Exp Ther ; 357(1): 1-9, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26787771

ABSTRACT

In acute organ injuries, mitochondria are often dysfunctional, and recent research has revealed that recovery of mitochondrial and renal functions is accelerated by induction of mitochondrial biogenesis (MB). We previously reported that the nonselective 5-HT2 receptor agonist DOI [1-(4-iodo-2,5-dimethoxyphenyl)propan-2-amine] induced MB in renal proximal tubular cells (RPTCs). The goal of this study was to determine the role of 5-HT2 receptors in the regulation of mitochondrial genes and oxidative metabolism in the kidney. The 5-HT2C receptor agonist CP-809,101 [2-[(3-chlorophenyl)methoxy]-6-(1-piperazinyl)pyrazine] and antagonist SB-242,084 [6-chloro-2,3-dihydro-5-methyl-N-[6-[(2-methyl-3-pyridinyl)oxy]-3-pyridinyl]-1H-indole-1-carboxyamide dihydrochloride] were used to examine the induction of renal mitochondrial genes and oxidative metabolism in RPTCs and in mouse kidneys in the presence and absence of the 5-HT2C receptor. Unexpectedly, both CP-809,101 and SB-242,084 increased RPTC respiration and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) mRNA expression in RPTCs at 1-10 nM. In addition, CP-809,101 and SB-242,084 increased mRNA expression of PGC-1α and the mitochondrial proteins NADH dehydrogenase subunit 1 and NADH dehydrogenase (ubiquinone) ß subcomplex 8 in mice. These compounds increased mitochondrial genes in RPTCs in which the 5-HT2C receptor was downregulated with small interfering RNA and in the renal cortex of mice lacking the 5-HT2C receptor. By contrast, the ability of these compounds to increase PGC-1α mRNA and respiration was blocked in RPTCs treated with 5-HT2A receptor small interfering RNA or the 5-HT2A receptor antagonist eplivanserin. In addition, the 5-HT2A receptor agonist NBOH-2C-CN [4-[2-[[(2-hydroxyphenyl)methyl]amino]ethyl]-2,5-dimethoxybenzonitrile] increased RPTC respiration at 1-100 nM. These results suggest that agonism of the 5-HT2A receptor induces MB and that the classic 5-HT2C receptor agonist CP-809,101 and antagonist SB-242,084 increase mitochondrial genes and oxidative metabolism through the 5-HT2A receptor. To our knowledge, this is the first report that links 5-HT2A receptor agonism to mitochondrial function.


Subject(s)
Mitochondria/genetics , Receptor, Serotonin, 5-HT2A/drug effects , Receptor, Serotonin, 5-HT2A/genetics , Serotonin 5-HT2 Receptor Agonists/pharmacology , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Aminopyridines/pharmacology , Animals , Electron Transport Complex I/biosynthesis , Electron Transport Complex I/genetics , Female , Gene Expression Regulation/drug effects , Gene Knockdown Techniques , Indoles/pharmacology , Kidney Tubules, Proximal/cytology , Kidney Tubules, Proximal/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , Mitochondria/drug effects , Oxidation-Reduction , Oxygen Consumption , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Piperazines/pharmacology , Pyrazines/pharmacology , Rabbits , Receptor, Serotonin, 5-HT2C/drug effects , Receptor, Serotonin, 5-HT2C/genetics , Transcription Factors/biosynthesis , Transcription Factors/genetics
15.
J Neurochem ; 136(3): 526-35, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26484945

ABSTRACT

Serotonin receptors are targets of drug therapies for a variety of neuropsychiatric and neurodegenerative disorders. Cocaine inhibits the re-uptake of serotonin (5-HT), dopamine, and noradrenaline, whereas caffeine blocks adenosine receptors and opens ryanodine receptors in the endoplasmic reticulum. We studied how 5-HT and adenosine affected spontaneous GABAergic transmission from thalamic reticular nucleus. We combined whole-cell patch clamp recordings of miniature inhibitory post-synaptic currents (mIPSCs) in ventrobasal thalamic neurons during local (puff) application of 5-HT in wild type (WT) or knockout mice lacking 5-HT2A receptors (5-HT2A -/-). Inhibition of mIPSCs frequency by low (10 µM) and high (100 µM) 5-HT concentrations was observed in ventrobasal neurons from 5-HT2A -/- mice. In WT mice, only 100 µM 5-HT significantly reduced mIPSCs frequency. In 5-HT2A -/- mice, NAN-190, a specific 5-HT1A antagonist, prevented the 100 µM 5-HT inhibition while blocking H-currents that prolonged inhibition during post-puff periods. The inhibitory effects of 100 µM 5-HT were enhanced in cocaine binge-treated 5-HT2A -/- mice. Caffeine binge treatment did not affect 5-HT-mediated inhibition. Our findings suggest that both 5-HT1A and 5-HT2A receptors are present in pre-synaptic thalamic reticular nucleus terminals. Serotonergic-mediated inhibition of GABA release could underlie aberrant thalamocortical physiology described after repetitive consumption of cocaine. Our findings suggest that both 5-HT1A , 5-HT2A and A1 receptors are present in pre-synaptic TRN terminals. 5-HT1A and A1 receptors would down-regulate adenylate cyclase, whereas 5-HT1A would also increase the probability of the opening of G-protein-activated inwardly rectifying K(+) channels (GIRK). Sustained opening of GIRK channels would hyperpolarize pre-synaptic terminals activating H-currents, resulting in less GABA release. 5-HT2A -would activate PLC and IP3 , increasing intracellular [Ca(2+) ] and thus facilitating GABA release.


Subject(s)
Caffeine/pharmacology , Cocaine/pharmacology , Dopamine Uptake Inhibitors/pharmacology , Phosphodiesterase Inhibitors/pharmacology , Receptor, Serotonin, 5-HT2A/metabolism , Thalamic Nuclei/drug effects , gamma-Aminobutyric Acid/metabolism , Action Potentials/drug effects , Animals , Cadmium Chloride/pharmacology , Dose-Response Relationship, Drug , In Vitro Techniques , Inositol 1,4,5-Trisphosphate/metabolism , Male , Mice , Mice, Knockout , Patch-Clamp Techniques , Receptor, Serotonin, 5-HT2A/genetics , Serotonin/pharmacology , Serotonin Agents/pharmacology , Thalamic Nuclei/metabolism , Type C Phospholipases/metabolism
16.
Psychiatry Res ; 228(1): 170-3, 2015 Jul 30.
Article in English | MEDLINE | ID: mdl-25920807

ABSTRACT

The role of the serotonin transporter promoter linked polymorphism (5HTTLPR) in depression, despite much research, remains unclear. Most studies compare persons with and without depression to each other. We show offspring at high (N = 192) as compared to low (N = 101) familial risk for major depressive disorder were almost four times as likely to have two copies of the short allele at 5HTTLPR, suggesting that incorporation of family history could be helpful in identifying genetic differences.


Subject(s)
Depressive Disorder, Major/genetics , Genetic Predisposition to Disease , Serotonin Plasma Membrane Transport Proteins/genetics , Genotype , Humans , Pedigree , Polymorphism, Genetic , Risk , Severity of Illness Index
17.
Front Pharmacol ; 6: 298, 2015.
Article in English | MEDLINE | ID: mdl-26779016

ABSTRACT

Episodic memory, can be defined as the memory for unique events. The serotonergic system one of the main neuromodulatory systems in the brain appears to play a role in it. The serotonin 2a receptor (5-HT2aR) one of the principal post-synaptic receptors for 5-HT in the brain, is involved in neuropsychiatric and neurological disorders associated with memory deficits. Recognition memory can be defined as the ability to recognize if a particular event or item was previously encountered and is thus considered, under certain conditions, a form of episodic memory. As human data suggest that a constitutively decrease of 5-HT2A signaling might affect episodic memory performance we decided to compare the performance of mice with disrupted 5-HT2aR signaling (htr2a (-/-)) with wild type (htr2a (+/+)) littermates in different recognition memory and working memory tasks that differed in the level of proactive interference. We found that ablation of 5-HT2aR signaling throughout development produces a deficit in tasks that cannot be solved by single item strategy suggesting that 5-HT2aR signaling is involved in interference resolution. We also found that in the absence of 5-HT2aR signaling serotonin has a deleterious effect on recognition memory retrieval through the activation of 5-HT1aR in the medial prefrontal cortex.

18.
J Neurosci ; 34(37): 12379-93, 2014 Sep 10.
Article in English | MEDLINE | ID: mdl-25209278

ABSTRACT

Early-life serotonin [5-hydroxytryptamine (5-HT)] signaling modulates brain development, which impacts adult behavior, but 5-HT-sensitive periods, neural substrates, and behavioral consequences remain poorly understood. Here we identify the period ranging from postnatal day 2 (P2) to P11 as 5-HT sensitive, with 5-HT transporter (5-HTT) blockade increasing anxiety- and depression-like behavior, and impairing fear extinction learning and memory in adult mice. Concomitantly, P2-P11 5-HTT blockade causes dendritic hypotrophy and reduced excitability of infralimbic (IL) cortex pyramidal neurons that normally promote fear extinction. By contrast, the neighboring prelimbic (PL) pyramidal neurons, which normally inhibit fear extinction, become more excitable. Excitotoxic IL but not PL lesions in adult control mice reproduce the anxiety-related phenotypes. These findings suggest that increased 5-HT signaling during P2-P11 alters adult mPFC function to increase anxiety and impair fear extinction, and imply a differential role for IL and PL neurons in regulating affective behaviors. Together, our results support a developmental mechanism for the etiology and pathophysiology of affective disorders and fear-related behaviors.


Subject(s)
Aging/metabolism , Anxiety/metabolism , Depression/metabolism , Extinction, Psychological , Fear , Prefrontal Cortex/physiopathology , Serotonin/metabolism , Animals , Animals, Newborn , Anxiety/complications , Behavior, Animal , Depression/complications , Female , Male , Mice
19.
J Neurosci ; 34(17): 6107-11, 2014 Apr 23.
Article in English | MEDLINE | ID: mdl-24760870

ABSTRACT

The activity of the prefrontal cortex is essential for normal emotional processing and is strongly modulated by serotonin (5-HT). Yet, little is known about the regulatory mechanisms that control the activity of the prefrontal 5-HT receptors. Here, we found and characterized a deregulation of prefrontal 5-HT receptor electrophysiological signaling in mouse models of disrupted serotonin transporter (5-HTT) function, a risk factor for emotional and cognitive disturbances. We identified a novel tyrosine kinase-dependent mechanism that regulates 5-HT-mediated inhibition of prefrontal pyramidal neurons. We report that mice with compromised 5-HTT, resulting from either genetic deletion or brief treatment with selective serotonin reuptake inhibitors during development, have amplified 5-HT1A receptor-mediated currents in adulthood. These greater inhibitory effects of 5-HT are accompanied by enhanced downstream coupling to Kir3 channels. Notably, in normal wild-type mice, we found that these larger 5-HT1A responses can be mimicked through inhibition of Src family tyrosine kinases. By comparison, in our 5-HTT mouse models, the larger 5-HT1A responses were rapidly reduced through inhibition of tyrosine phosphatases. Our findings implicate tyrosine phosphorylation in regulating the electrophysiological effects of prefrontal 5-HT1A receptors with implications for neuropsychiatric diseases associated with emotional dysfunction, such as anxiety and depressive disorders.


Subject(s)
Behavior, Animal/physiology , Prefrontal Cortex/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism , Serotonin/metabolism , Animals , Behavior, Animal/drug effects , Female , Inhibition, Psychological , Male , Mice , Phosphorylation/drug effects , Prefrontal Cortex/drug effects , Pyramidal Cells/drug effects , Pyramidal Cells/metabolism , Serotonin Plasma Membrane Transport Proteins/genetics , Selective Serotonin Reuptake Inhibitors/pharmacology , Synaptic Transmission/drug effects
20.
Neuropsychopharmacology ; 37(13): 2747-55, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22871913

ABSTRACT

The need for safer, more effective therapeutics for the treatment of schizophrenia is widely acknowledged. To optimally target novel pharmacotherapies, in addition to establishing the mechanisms responsible for the beneficial effects of antipsychotics, the pathways underlying the most severe side effects must also be elucidated. Here we investigate the role of serotonin 2A (5-HT(2A)), serotonin 2C (5-HT(2C)), and dopamine 2 receptors (D2) in mediating adverse effects associated with canonical first- and second-generation antipsychotic drugs in mice. Wild-type (WT) and 5-HT(2A) knockout (KO) mice treated with haloperidol, clozapine, and risperidone were assessed for locomotor activity and catalepsy. WT mice showed a marked reduction in locomotor activity following acute administration of haloperidol and high-dose risperidone, which was most likely secondary to the severe catalepsy caused by these compounds. Clozapine also dramatically reduced locomotor activity, but in the absence of catalepsy. Interestingly, 5-HT(2A) KO mice were cataleptic following haloperidol and risperidone, but did not respond to clozapine's locomotor-suppressing effects. Restoration of 5-HT(2A) expression to cortical glutamatergic neurons re-instated the locomotor-suppressing effects of clozapine in the open field. In sum, we confirm that haloperidol and risperidone caused catalepsy in rodents, driven by strong antagonism of D2. We also demonstrate that clozapine decreases locomotor activity in a 5-HT(2A)-dependent manner, in the absence of catalepsy. Moreover, we show that it is the cortical population of 5-HT(2A) that mediate the locomotor-suppressing effects of clozapine.


Subject(s)
Clozapine/pharmacology , Motor Activity/physiology , Prosencephalon/physiology , Receptor, Serotonin, 5-HT2A/physiology , Serotonin Antagonists/pharmacology , Animals , Male , Mice , Mice, 129 Strain , Mice, Knockout , Mice, Transgenic , Motor Activity/drug effects , Prosencephalon/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...