Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Food Sci Technol Int ; 26(4): 344-352, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31870194

ABSTRACT

Pseudocereals are gluten-free, nutrient-dense raw materials that are being considered for the production of gluten-free products, especially bread. This study proposes a gluten-free sourdough formula based on equal amounts of amaranth, buckwheat, and quinoa with a dough yield of 250, and an elaboration method to obtain ripe sourdough. Sourdough was characterized in terms of microbiology, pH, and total titratable acidity. The established protocol made it possible to obtain a spontaneous ripe sourdough with lactic acid bacteria populations of 9.60 ± 0.02 log CFU/g and total yeasts and non-Saccharomyces yeast populations (lysine positive) of 7.91 ± 0.15 and 7.52 ± 0.10 log CFU/g, respectively. Great pH stability and total titratable acidity were maintained in the ripe sourdough phase, with values of 4.04 ± 0.02 and 18.39 ± 0.56 ml NaOH 0.1 M/10 g, respectively, at the time of the next refreshment. The use of this sourdough could be an interesting alternative for the production of not only gluten-free bread but also other gluten-free products.


Subject(s)
Amaranthus/chemistry , Bread/analysis , Chenopodium quinoa/chemistry , Fagopyrum/chemistry , Food Handling/methods , Food Microbiology , Glutens/analysis , Bread/microbiology , Diet, Gluten-Free , Fermentation , Flour/analysis , Humans , Lactobacillus , Saccharomyces cerevisiae , Seeds/chemistry
2.
J Ind Microbiol Biotechnol ; 47(1): 1-20, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31691030

ABSTRACT

Denitrification is one of the key processes of the global nitrogen (N) cycle driven by bacteria. It has been widely known for more than 100 years as a process by which the biogeochemical N-cycle is balanced. To study this process, we develop an individual-based model called INDISIM-Denitrification. The model embeds a thermodynamic model for bacterial yield prediction inside the individual-based model INDISIM and is designed to simulate in aerobic and anaerobic conditions the cell growth kinetics of denitrifying bacteria. INDISIM-Denitrification simulates a bioreactor that contains a culture medium with succinate as a carbon source, ammonium as nitrogen source and various electron acceptors. To implement INDISIM-Denitrification, the individual-based model INDISIM was used to give sub-models for nutrient uptake, stirring and reproduction cycle. Using a thermodynamic approach, the denitrification pathway, cellular maintenance and individual mass degradation were modeled using microbial metabolic reactions. These equations are the basis of the sub-models for metabolic maintenance, individual mass synthesis and reducing internal cytotoxic products. The model was implemented in the open-access platform NetLogo. INDISIM-Denitrification is validated using a set of experimental data of two denitrifying bacteria in two different experimental conditions. This provides an interactive tool to study the denitrification process carried out by any denitrifying bacterium since INDISIM-Denitrification allows changes in the microbial empirical formula and in the energy-transfer-efficiency used to represent the metabolic pathways involved in the denitrification process. The simulator can be obtained from the authors on request.


Subject(s)
Denitrification , Ammonium Compounds/metabolism , Bacteria/metabolism , Bioreactors/microbiology , Carbon/metabolism , Nitrogen/metabolism , Thermodynamics
3.
Front Microbiol ; 9: 33, 2018.
Article in English | MEDLINE | ID: mdl-29467721

ABSTRACT

The factors leading to changes in the organization of microbial assemblages at fine spatial scales are not well characterized or understood. However, they are expected to guide the succession of community development and function toward specific outcomes that could impact human health and the environment. In this study, we put forward a combined experimental and agent-based modeling framework and use it to interpret unique spatial organization patterns of H1-Type VI secretion system (T6SS) mutants of P. aeruginosa under spatial confinement. We find that key parameters, such as T6SS-mediated cell contact and lysis, spatial localization, relative species abundance, cell density and local concentrations of growth substrates and metabolites are influenced by spatial confinement. The model, written in the accessible programming language NetLogo, can be adapted to a variety of biological systems of interest and used to simulate experiments across a broad parameter space. It was implemented and run in a high-throughput mode by deploying it across multiple CPUs, with each simulation representing an individual well within a high-throughput microwell array experimental platform. The microfluidics and agent-based modeling framework we present in this paper provides an effective means by which to connect experimental studies in microbiology to model development. The work demonstrates progress in coupling experimental results to simulation while also highlighting potential sources of discrepancies between real-world experiments and idealized models.

4.
Front Microbiol ; 8: 2628, 2017.
Article in English | MEDLINE | ID: mdl-29354112

ABSTRACT

Nowadays control of the growth of Saccharomyces to obtain biomass or cellular wall components is crucial for specific industrial applications. The general aim of this contribution is to deal with experimental data obtained from yeast cells and from yeast cultures to attempt the integration of the two levels of information, individual and population, to progress in the control of yeast biotechnological processes by means of the overall analysis of this set of experimental data, and to assist in the improvement of an individual-based model, namely, INDISIM-Saccha. Populations of S. cerevisiae growing in liquid batch culture, in aerobic and microaerophilic conditions, were studied. A set of digital images was taken during the population growth, and a protocol for the treatment and analyses of the images obtained was established. The piecewise linear model of Buchanan was adjusted to the temporal evolutions of the yeast populations to determine the kinetic parameters and changes of growth phases. In parallel, for all the yeast cells analyzed, values of direct morphological parameters, such as area, perimeter, major diameter, minor diameter, and derived ones, such as circularity and elongation, were obtained. Graphical and numerical methods from descriptive statistics were applied to these data to characterize the growth phases and the budding state of the yeast cells in both experimental conditions, and inferential statistical methods were used to compare the diverse groups of data achieved. Oxidative metabolism of yeast in a medium with oxygen available and low initial sugar concentration can be taken into account in order to obtain a greater number of cells or larger cells. Morphological parameters were analyzed statistically to identify which were the most useful for the discrimination of the different states, according to budding and/or growth phase, in aerobic and microaerophilic conditions. The use of the experimental data for subsequent modeling work was then discussed and compared to simulation results generated with INDISIM-Saccha, which allowed us to advance in the development of this yeast model, and illustrated the utility of data at different levels of observation and the needs and logic behind the development of a microbial individual-based model.

5.
Comput Struct Biotechnol J ; 14: 325-32, 2016.
Article in English | MEDLINE | ID: mdl-27635191

ABSTRACT

Modelling cellular metabolism is a strategic factor in investigating microbial behaviour and interactions, especially for bio-technological processes. A key factor for modelling microbial activity is the calculation of nutrient amounts and products generated as a result of the microbial metabolism. Representing metabolic pathways through balanced reactions is a complex and time-consuming task for biologists, ecologists, modellers and engineers. A new computational tool to represent microbial pathways through microbial metabolic reactions (MMRs) using the approach of the Thermodynamic Electron Equivalents Model has been designed and implemented in the open-access framework NetLogo. This computational tool, called MbT-Tool (Metabolism based on Thermodynamics) can write MMRs for different microbial functional groups, such as aerobic heterotrophs, nitrifiers, denitrifiers, methanogens, sulphate reducers, sulphide oxidizers and fermenters. The MbT-Tool's code contains eighteen organic and twenty inorganic reduction-half-reactions, four N-sources (NH4 (+), NO3 (-), NO2 (-), N2) to biomass synthesis and twenty-four microbial empirical formulas, one of which can be determined by the user (CnHaObNc). MbT-Tool is an open-source program capable of writing MMRs based on thermodynamic concepts, which are applicable in a wide range of academic research interested in designing, optimizing and modelling microbial activity without any extensive chemical, microbiological and programing experience.

6.
J Theor Biol ; 403: 45-58, 2016 08 21.
Article in English | MEDLINE | ID: mdl-27179457

ABSTRACT

We have developed an individual-based model for denitrifying bacteria. The model, called INDISIM-Paracoccus, embeds a thermodynamic model for bacterial yield prediction inside the individual-based model INDISIM, and is designed to simulate the bacterial cell population behavior and the product dynamics within the culture. The INDISIM-Paracoccus model assumes a culture medium containing succinate as a carbon source, ammonium as a nitrogen source and various electron acceptors such as oxygen, nitrate, nitrite, nitric oxide and nitrous oxide to simulate in continuous or batch culture the different nutrient-dependent cell growth kinetics of the bacterium Paracoccus denitrificans. The individuals in the model represent microbes and the individual-based model INDISIM gives the behavior-rules that they use for their nutrient uptake and reproduction cycle. Three previously described metabolic pathways for P. denitrificans were selected and translated into balanced chemical equations using a thermodynamic model. These stoichiometric reactions are an intracellular model for the individual behavior-rules for metabolic maintenance and biomass synthesis and result in the release of different nitrogen oxides to the medium. The model was implemented using the NetLogo platform and it provides an interactive tool to investigate the different steps of denitrification carried out by a denitrifying bacterium. The simulator can be obtained from the authors on request.


Subject(s)
Denitrification , Models, Theoretical , Paracoccus denitrificans/physiology , Aerobiosis , Anaerobiosis , Biomass , Calibration , Stochastic Processes , Thermodynamics
7.
Arch Microbiol ; 197(8): 991-9, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26206245

ABSTRACT

Saccharomyces cerevisiae is industrially the most important yeast, and its growth in different concentrations of oxygen can be used to improve various application processes. The aims of this work were to study in aerobic and microaerophilic growth conditions the cell size and tendency of morphological changes in S. cerevisiae in different stages of growth and to assess the effect of the two growth conditions in the differentiation of quiescent and non-quiescent subpopulations in the stationary phase. Dissolved oxygen levels in the culture medium for aerobic and microaerophilic conditions were 6.6 and 5.2 mg L(-1), respectively. In both growth conditions, similar viable cell populations were obtained, although in aerobic conditions the stationary phase was reached and the quiescent and non-quiescent subpopulations were also differentiated. The microaerophilic growth produced a significant reduction in the specific growth rate and consequently also in glucose and oxygen consumption. The most notable changes in cellular size and morphology occurred with the depletion of glucose and oxygen. The concentration of dissolved oxygen in the culture medium significantly modulated the growth kinetics of S. cerevisiae and their development and differentiation to quiescent cells. This could justify the need to readjust small variations in oxygen levels during yeast cultures in biotechnological processes.


Subject(s)
Saccharomyces cerevisiae/growth & development , Aerobiosis , Culture Media/chemistry , Glucose/metabolism , Kinetics , Oxygen/chemistry , Oxygen Consumption , Saccharomyces cerevisiae/cytology
8.
Food Sci Technol Int ; 21(6): 428-39, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25008077

ABSTRACT

The microbiological culture-dependent characterization and physicochemical characteristics of laboratory sourdough prepared with grape (GS) were evaluated and compared with apple (AS) and yogurt (YS), which are the usual Spanish sourdough ingredients. Ripe GS took longer than AS and YS to reach the appropriate acidity and achieved lower values of lactic acid. In all sourdoughs, the lactic acid bacteria (LAB) increased during processing and were the dominant microorganisms (>1E+8 CFU/g). GS, as well as AS, had high diversity of LAB species. In ripe YS, Pediococcus pentosaceus was the only species identified; in GS and AS, several Lactobacilli were also found, Lb. plantarum, Lb. brevis, and Lb. sakei; in addition, in GS Weisella cibaria also appeared. Regarding the yeast population, non-Saccharomyces yeasts from GS and AS showed a very high specific population (>1E+7 CFU/g), but this was reduced in ripe sourdough (<1E+4 CFU/g). Finally, the Saccharomyces group dominated in all sourdoughs. Starting ingredients or raw material provided microbiological specificity to sourdoughs, and grape could be considered one of them.


Subject(s)
Bread/microbiology , Malus/microbiology , Vitis/microbiology , Yogurt/microbiology , Colony Count, Microbial , Fermentation , Flour/microbiology , Food Microbiology , Hydrogen-Ion Concentration , Lactic Acid , Lactobacillus/growth & development , Saccharomyces cerevisiae/growth & development , Yeasts
9.
Food Microbiol ; 28(4): 810-7, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21511143

ABSTRACT

The performance of fermentation processes is greatly influenced by the size and quality of inocula. The characterization of the replicative age is decided by the number of birth scars each yeast exhibits on its cellular membrane. Yeast ageing and inoculum size are factors that affect industrial fermentation, particularly those processes in which the yeast cells are reused such as the production of beer. This process reuses yeast cropped at the end of one fermentation in the following one, in a process called "serial repitching". The aim of this study was to explore the effects of inoculum size and ageing on the first stages of the dynamics of yeast population growth. However, only Individual-based Models (IbMs) allow the study of small, well-characterized, microbial inocula. We used INDISIM-YEAST, based on the generic IbM simulator INDISIM, to carry out these studies. Several simulations were performed to analyze the effect of the inoculum size and genealogical age of the cells that made it up on the lag phase, first division time and specific growth rate. The shortest lag phase and time to the first division were obtained with largest inocula and with the youngest inoculated parent cells.


Subject(s)
Beer/microbiology , Industrial Microbiology/methods , Models, Biological , Yeasts/growth & development , Computer Simulation , Fermentation/physiology , Yeasts/metabolism
10.
FEMS Yeast Res ; 11(1): 18-28, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21040453

ABSTRACT

Data from electric particle analysis, light diffraction and flow cytometry analysis provide information on changes in cell morphology. Here, we report analyses of Saccharomyces cerevisiae populations growing in a batch culture using these techniques. The size distributions were determined by electric particle analysis and by light diffraction in order to compare their outcomes. Flow cytometry parameters forward (related to cell size) and side (related to cell granularity) scatter were also determined to complement this information. These distributions of yeast properties were analysed statistically and by a complexity index. The cell size of Saccharomyces at the lag phase was smaller than that at the beginning of the exponential phase, whereas during the stationary phase, the cell size converged with the values observed during the lag phase. These experimental techniques, when used together, allow us to distinguish among and characterize the cell size, cell granularity and the structure of the yeast population through the three growth phases. Flow cytometry patterns are better than light diffraction and electric particle analysis in showing the existence of subpopulations during the different phases, especially during the stationary phase. The use of a complexity index in this context helped to differentiate these phases and confirmed the yeast cell heterogeneity.


Subject(s)
Particle Size , Saccharomyces cerevisiae/cytology , Wine/microbiology , Flow Cytometry , Saccharomyces cerevisiae/classification
11.
J Theor Biol ; 214(2): 305-19, 2002 Jan 21.
Article in English | MEDLINE | ID: mdl-11812180

ABSTRACT

An individual-based model has been developed and designed to simulate the growth and behaviour of bacterial colonies. The simulator is called INDISIM, which stands for INDividual DIScrete SIMulations. INDISIM is discrete in space and time, and controls a group of bacterial cells at each time step, using a set of random, time-dependent variables for each bacterium. These variables are used to characterize its position in space, biomass, state in the cellular reproduction cycle as well as other individual properties. The space where the bacterial colony evolves is also discrete. A physical lattice is introduced, subject to the appropriate boundary conditions. The lattice is subdivided into spatial cells, also defined by a set of random, time-dependent variables. These variables may include concentrations of different types of particles, nutrients, reaction products and residual products. Random variables are used to characterize the individual bacterium and the individual particle, as well as the updating of individual rules. Thus, the simulations are stochastic rather than deterministic. The whole set of variables, those that characterize the bacterial population and the environment where they evolve, enables the simulator to study the behaviour of each microorganism-such as its motion, uptake, metabolism, and viability-according to given rules suited for the system under study. These rules require the input of only a few parameters. Once this information is inputted, INDISIM simulates the behaviour of the system providing insights into the global properties of the system from the assumptions made on the properties of the individual bacteria. The relation between microscopic and global properties of the bacterial colony is obtained by using statistical averaging. In this work INDISIM has been used to study (a) biomass distributions, (b) the relationship between the rate of growth of a bacterial colony and the nutrient concentration and temperature, and (c) metabolic oscillations in batch bacterial colonies. The simulation results are found to be in very good qualitative agreement with available experimental data, and provide useful insights into the mechanisms involved in each case.


Subject(s)
Bacteria/growth & development , Computer Simulation , Biomass , Culture Media , Microbiological Techniques , Models, Biological , Nutritional Physiological Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL
...