Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Med Chem Lett ; 14(9): 1224-1230, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37736178

ABSTRACT

Heparan sulfate proteoglycans (HSPGs) and their associated proteins aid in tumor progression through modulation of biological events such as cell invasion, angiogenesis, metastasis, and immunological responses. Metalloshielding of the anionic heparan sulfate (HS) chains by cationic polynuclear platinum complexes (PPCs) prevents the HS from interacting with HS-associated proteins and thus diminishes the critical functions of HSPG. Studies herein exploring the PPC-HS interactions demonstrated that a series of PPCs varying in charge, nuclearity, distance between Pt centers, and hydrogen-bonding ability influence HS affinity. We report that the polyamine-linked complexes have high HS affinity and display excellent in vivo activity against breast cancer metastases and those arising in the bone and liver compared to carboplatin. Overall, the PPC-HS niche offers an attractive approach for targeting HSPG-expressing tumor cells.

2.
J Inorg Biochem ; 245: 112254, 2023 08.
Article in English | MEDLINE | ID: mdl-37182504

ABSTRACT

The biological activity of the 6+ Co containing Werner's Complex has been described and mechanistic considerations suggest that the highly anionic glycosaminoglycans (heparan sulfate, HS, GAGs) are implicated in this activity [Paiva et al. 2021]. To examine in detail the molecular basis of Werner's Complex biological properties we have examined a selection of simple mononuclear Co3+ compounds for their interactions with HS and Fondaparinux (FPX). FPX is a highly sulfated synthetic pentasaccharide used as a model HS substrate [Mangrum et al. 2014, Peterson et al. 2017]. The Co complexes were chosen to be formally substitution-inert and/or have the potential for covalent binding to the biomolecule. Using both indirect competitive inhibition assays and direct mass spectrometric assays, formally substitution-inert complexes bound to FPX with protection from multiple sulfate loss in the gas phase through metalloshielding. Covalent binding of Co-Cl complexes as in [CoCl(NH3)5]2+ and cis-[CoCl2(en)2]+ was confirmed by mass spectrometry. Interestingly, the former complex was shown to be an effective inhibitor of bacterial heparinase enzyme activity and to inhibit heparanase-dependent cellular invasion through the extracellular matrix (ECM). Pursuing the theme of metalloglycomics, we have observed the hitherto unappreciated biological activity of the simple [CoCl(NH3)5]2+ compound, a staple of most inorganic chemistry lab curricula.


Subject(s)
Cobalt , Glycosaminoglycans , Cobalt/metabolism , Heparin/chemistry , Heparin/metabolism , Heparitin Sulfate/chemistry , Heparitin Sulfate/metabolism , Heparitin Sulfate/pharmacology , Extracellular Matrix/metabolism , Fondaparinux
3.
ACS Nano ; 16(6): 8954-8966, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35640255

ABSTRACT

Viruslike particles (VLPs) fabricated using wireframe DNA origami are emerging as promising vaccine and gene therapeutic delivery platforms due to their programmable nature that offers independent control over their size and shape, as well as their site-specific functionalization. As materials that biodegrade in the presence of endonucleases, specifically DNase I and II, their utility for the targeting of cells, tissues, and organs depends on their stability in vivo. Here, we explore minor groove binders (MGBs) as specific endonuclease inhibitors to control the degradation half-life of wireframe DNA origami. Bare, unprotected DNA-VLPs composed of two-helix edges were found to be stable in fetal bovine serum under typical cell culture conditions and in human serum for 24 h but degraded within 3 h in mouse serum, suggesting species-specific endonuclease activity. Inhibiting endonucleases by incubating DNA-VLPs with diamidine-class MGBs increased their half-lives in mouse serum by more than 12 h, corroborated by protection against isolated DNase I and II. Our stabilization strategy was compatible with the functionalization of DNA-VLPs with HIV antigens, did not interfere with B-cell signaling activity of DNA-VLPs in vitro, and was nontoxic to B-cell lines. It was further found to be compatible with multiple wireframe DNA origami geometries and edge architectures. MGB protection is complementary to existing methods such as PEGylation and chemical cross-linking, offering a facile protocol to control DNase-mediated degradation rates for in vitro and possibly in vivo therapeutic and vaccine applications.


Subject(s)
Nanostructures , Mice , Humans , Animals , Nucleic Acid Conformation , DNA , Endonucleases , Deoxyribonuclease I
4.
Antiviral Res ; 184: 104957, 2020 12.
Article in English | MEDLINE | ID: mdl-33132195

ABSTRACT

Human cytomegalovirus (HCMV) infects up to 90-100% of the world population. Although HCMV infection is not a concern for immunocompetent patients, it can be life threatening for immunocompromised individuals. Additionally, congenital HCMV infections can cause serious neurological deficits in neonates. Since viral resistance mutations arise for all current treatments, new treatments targeting novel processes are needed. A well-defined target for HCMV is heparan sulfate, a highly sulfated glycosaminoglycan (GAG) necessary for virion/host cell attachment. In this study, we investigated as possible antiviral agents substitution-inert cationic polynuclear platinum complexes (PPCs) that demonstrate charge-dependent high affinity for GAGs (Katner et al., 2018; Peterson et al., 2017). Certain PPCs had anti-HCMV activities in low micromolar concentrations and antiviral activity correlated with their GAG-binding affinity. Time of addition, removal, and mechanistic studies were consistent with PPCs binding to cells and blocking HCMV virion attachment; however, evidence also suggested that PPC/virion interactions could inhibit fibroblast but not epithelial cell infection. We hypothesize that the PPC-heparan sulfate interaction described here is a general approach to inhibition of virion/host cell attachment and viral entry mediated by other anionic GAGs and sialic acids on the cell surface. Through metalloshielding of the critical sulfate receptors, PPCs offer an attractive alternative to current antiviral compounds, with the potential to target a broad spectrum of viruses that utilize GAGs for attachment and entry.


Subject(s)
Cytomegalovirus/drug effects , Platinum Compounds/pharmacology , Virus Internalization/drug effects , Antiviral Agents/pharmacology , Cell Line , Cell Survival , Epithelial Cells/virology , Fibroblasts/virology , Gene Expression Regulation, Viral , Humans , Platinum Compounds/chemistry , Viral Matrix Proteins/metabolism , Viral Proteins , Virion/drug effects
5.
Chemistry ; 24(25): 6606-6616, 2018 May 02.
Article in English | MEDLINE | ID: mdl-29655185

ABSTRACT

Cleavage of heparan sulfate proteoglycans (HSPGs) by the enzyme heparanase modulates tumour-related events including angiogenesis, cell invasion, and metastasis. Metalloshielding of heparan sulfate (HS) by positively charged polynuclear platinum complexes (PPCs) effectively inhibits physiologically critical HS functions. Studies using bacterial P. heparinus heparinase II showed that a library of Pt complexes varying in charge and nuclearity and the presence or absence of a dangling amine inhibits the cleavage activity of the enzyme on the synthetic pentasaccharide, Fondaparinux (FPX). Charge-dependent affinity of PPC for FPX was seen in competition assays with methylene blue and ethidium bromide. The dissociation constant (Kd ) of TriplatinNC for FPX was directly measured by isothermal titration calorimetry (ITC). The trend in DFT calculated interaction energies with heparin fragments is consistent with the spectroscopic studies. Competitive inhibition of TAMRA-R9 internalization in human carcinoma (HCT116) cells along with studies in HCT116, wildtype CHO and mutant CHO-pgsA745 (lacking HS/CS) cells confirm that HSPG-mediated interactions play an important role in the cellular accumulation of PPCs.


Subject(s)
Heparitin Sulfate/pharmacology , Organoplatinum Compounds/pharmacology , Animals , Fondaparinux , Glucuronidase/metabolism , HCT116 Cells , Heparan Sulfate Proteoglycans/pharmacology , Heparin/metabolism , Humans , Nuclear Magnetic Resonance, Biomolecular , Oligosaccharides , Organoplatinum Compounds/chemistry , Polysaccharides/pharmacology
6.
Pharm Dev Technol ; 8(1): 31-8, 2003.
Article in English | MEDLINE | ID: mdl-12665195

ABSTRACT

Laboratory-scale spray-congealing equipment was utilized to fabricate injectable microparticles consisting of polyorthoester and bupivacaine. Operating conditions for the spray-congealing process were optimized to produce microparticles with the desired shape and particle size to yield acceptable syringeability and injectability. Characterizations were performed to determine the chemico-physical properties of polyorthoester before and after microparticle fabrication. Microparticles with different drug loadings and comparable particle sizes were produced, and their in vitro drug-release profiles were determined. The in vitro drug release of microparticles with a high drug loading was markedly faster than those with a low drug loading. This is partially attributed to a more significant initial burst-drug release of the microparticles with a high drug loading. The microparticles have demonstrated the potential to be used for long-acting postsurgery pain management by local injection.


Subject(s)
Bupivacaine/chemistry , Polyesters/chemistry , Chemistry, Pharmaceutical , Microspheres , Particle Size
7.
Environ Int ; 29(2-3): 125-35, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12676200

ABSTRACT

On February 12-15, 2001, more than 200 scientists, engineers, decision makers, and educators participated in a conference on the "Future Directions in Air Quality Research: Ecological, Atmospheric, Regulatory/Policy, and Educational Issues." Important perspectives are summarized from the keynote addresses of noted scientists and educators, as well as managers in government, industry, and public interest groups. Observations and recommendations are provided to stimulate further thought about how to increase opportunities to make greater use of scientific knowledge in air-quality decision making and to ensure that decisions are effective, economically viable, health and ecologically sound, and socially acceptable. Recommendations are given regarding ways in which communications between scientists and policy makers should be structured so as to make appropriate and effective use of scientists and the knowledge they can provide in policy-making fora.


Subject(s)
Air Pollution/prevention & control , Education , Environment , Policy Making , Environmental Health , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...