Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 14(1): 6142, 2024 03 13.
Article in English | MEDLINE | ID: mdl-38480771

ABSTRACT

At the beginning of 2020, Italy was the country with the highest number of COVID-19 cases, not only in Europe, but also in the rest of the world, and Lombardy was the most heavily hit region of Italy. The objective of this research is to understand which variables have determined the prevalence of cases in Lombardy and in other highly-affected European regions. We consider the first and second waves of the COVID-19 pandemic, using a set of 22 variables related to economy, population, healthcare and education. Regions with a high prevalence of cases are extracted by means of binary classifiers, then the most relevant variables for the classification are determined, and the robustness of the analysis is assessed. Our results show that the most meaningful features to identify high-prevalence regions include high number of hours spent in work environments, high life expectancy, and low number of people leaving from education and neither employed nor educated or trained.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Pandemics , Italy/epidemiology , Europe/epidemiology
3.
Sci Rep ; 14(1): 2847, 2024 02 03.
Article in English | MEDLINE | ID: mdl-38310171

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is a monogenic, rare disease, characterized by the formation of multiple cysts that grow out of the renal tubules. Despite intensive attempts to develop new drugs or repurpose existing ones, there is currently no definitive cure for ADPKD. This is primarily due to the complex and variable pathogenesis of the disease and the lack of models that can faithfully reproduce the human phenotype. Therefore, the development of models that allow automated detection of cysts' growth directly on human kidney tissue is a crucial step in the search for efficient therapeutic solutions. Artificial Intelligence methods, and deep learning algorithms in particular, can provide powerful and effective solutions to such tasks, and indeed various architectures have been proposed in the literature in recent years. Here, we comparatively review state-of-the-art deep learning segmentation models, using as a testbed a set of sequential RGB immunofluorescence images from 4 in vitro experiments with 32 engineered polycystic kidney tubules. To gain a deeper understanding of the detection process, we implemented both pixel-wise and cyst-wise performance metrics to evaluate the algorithms. Overall, two models stand out as the best performing, namely UNet++ and UACANet: the latter uses a self-attention mechanism introducing some explainability aspects that can be further exploited in future developments, thus making it the most promising algorithm to build upon towards a more refined cyst-detection platform. UACANet model achieves a cyst-wise Intersection over Union of 0.83, 0.91 for Recall, and 0.92 for Precision when applied to detect large-size cysts. On all-size cysts, UACANet averages at 0.624 pixel-wise Intersection over Union. The code to reproduce all results is freely available in a public GitHub repository.


Subject(s)
Cysts , Polycystic Kidney, Autosomal Dominant , Humans , Polycystic Kidney, Autosomal Dominant/pathology , Artificial Intelligence , Kidney/diagnostic imaging , Kidney/pathology , Kidney Tubules , Cysts/diagnostic imaging , Cysts/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...