Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
PLoS Genet ; 20(2): e1011159, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38377146

ABSTRACT

Common genetic variants in the repressive GATA-family transcription factor (TF) TRPS1 locus are associated with breast cancer risk, and luminal breast cancer cell lines are particularly sensitive to TRPS1 knockout. We introduced an inducible degron tag into the native TRPS1 locus within a luminal breast cancer cell line to identify the direct targets of TRPS1 and determine how TRPS1 mechanistically regulates gene expression. We acutely deplete over 80 percent of TRPS1 from chromatin within 30 minutes of inducing degradation. We find that TRPS1 regulates transcription of hundreds of genes, including those related to estrogen signaling. TRPS1 directly regulates chromatin structure, which causes estrogen receptor alpha (ER) to redistribute in the genome. ER redistribution leads to both repression and activation of dozens of ER target genes. Downstream from these primary effects, TRPS1 depletion represses cell cycle-related gene sets and reduces cell doubling rate. Finally, we show that high TRPS1 activity, calculated using a gene expression signature defined by primary TRPS1-regulated genes, is associated with worse breast cancer patient prognosis. Taken together, these data suggest a model in which TRPS1 modulates the genomic distribution of ER, both activating and repressing transcription of genes related to cancer cell fitness.


Subject(s)
Breast Neoplasms , Chromatin , Fingers , Hair Diseases , Langer-Giedion Syndrome , Nose , Female , Humans , Breast Neoplasms/genetics , Chromatin/genetics , Estrogen Receptor alpha/genetics , Fingers/abnormalities , GATA Transcription Factors , Gene Expression , Genes, cdc , Nose/abnormalities , Repressor Proteins/genetics
2.
Internet Interv ; 34: 100644, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38099095

ABSTRACT

As mobile and wearable devices continue to grow in popularity, there is strong yet unrealized potential to harness people's mobile sensing data to improve our understanding of their cellular and biologically-based diseases. Breakthrough technical innovations in tumor modeling, such as the three dimensional tumor microenvironment system (TMES), allow researchers to study the behavior of tumor cells in a controlled environment that closely mimics the human body. Although patients' health behaviors are known to impact their tumor growth through circulating hormones (cortisol, melatonin), capturing this process is a challenge to rendering realistic tumor models in the TMES or similar tumor modeling systems. The goal of this paper is to propose a conceptual framework that unifies researchers from digital health, data science, oncology, and cellular signaling, in a common cause to improve cancer patients' treatment outcomes through mobile sensing. In support of our framework, existing studies indicate that it is feasible to use people's mobile sensing data to approximate their underlying hormone levels. Further, it was found that when cortisol is cycled through the TMES based on actual patients' cortisol levels, there is a significant increase in pancreatic tumor cell growth compared to when cortisol levels are at normal healthy levels. Taken together, findings from these studies indicate that continuous monitoring of people's hormone levels through mobile sensing may improve experimentation in the TMES, by informing how hormones should be introduced. We hope our framework inspires digital health researchers in the psychosocial sciences to consider how their expertise can be applied to advancing outcomes across levels of inquiry, from behavioral to cellular.

3.
Mol Cancer Res ; 21(12): 1329-1341, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37698543

ABSTRACT

The clinical success of combined androgen deprivation therapy (ADT) and radiotherapy (RT) in prostate cancer created interest in understanding the mechanistic links between androgen receptor (AR) signaling and the DNA damage response (DDR). Convergent data have led to a model where AR both regulates, and is regulated by, the DDR. Integral to this model is that the AR regulates the transcription of DDR genes both at a steady state and in response to ionizing radiation (IR). In this study, we sought to determine which immediate transcriptional changes are induced by IR in an AR-dependent manner. Using PRO-seq to quantify changes in nascent RNA transcription in response to IR, the AR antagonist enzalutamide, or the combination of the two, we find that enzalutamide treatment significantly decreased expression of canonical AR target genes but had no effect on DDR gene sets in prostate cancer cells. Surprisingly, we also found that the AR is not a primary regulator of DDR genes either in response to IR or at a steady state in asynchronously growing prostate cancer cells. IMPLICATIONS: Our data indicate that the clinical benefit of combining ADT with RT is not due to direct AR regulation of DDR gene transcription, and that the field needs to consider alternative mechanisms for this clinical benefit.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Male , Humans , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Androgen Antagonists/pharmacology , Cell Line, Tumor , DNA Damage , Prostatic Neoplasms, Castration-Resistant/genetics
4.
bioRxiv ; 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37461612

ABSTRACT

Breast cancer is the most frequently diagnosed cancer in women. The most common subtype is luminal breast cancer, which is typically driven by the estrogen receptor α (ER), a transcription factor (TF) that activates many genes required for proliferation. Multiple effective therapies target this pathway, but individuals often develop resistance. Thus, there is a need to identify additional targets that regulate ER activity and contribute to breast tumor progression. TRPS1 is a repressive GATA-family TF that is overexpressed in breast tumors. Common genetic variants in the TRPS1 locus are associated with breast cancer risk, and luminal breast cancer cell lines are particularly sensitive to TRPS1 knockout. However, we do not know how TRPS1 regulates target genes to mediate these breast cancer patient and cellular outcomes. We introduced an inducible degron tag into the native TRPS1 locus within a luminal breast cancer cell line to identify the direct targets of TRPS1 and determine how TRPS1 mechanistically regulates gene expression. We acutely deplete over eighty percent of TRPS1 from chromatin within 30 minutes of inducing degradation. We find that TRPS1 regulates transcription of hundreds of genes, including those related to estrogen signaling. TRPS1 directly regulates chromatin structure, which causes ER to redistribute in the genome. ER redistribution leads to both repression and activation of dozens of ER target genes. Downstream from these primary effects, TRPS1 depletion represses cell cycle-related gene sets and reduces cell doubling rate. Finally, we show that high TRPS1 activity, calculated using a gene expression signature defined by primary TRPS1-regulated genes, is associated with worse breast cancer patient prognosis. Taken together, these data suggest a model in which TRPS1 modulates the activity of other TFs, both activating and repressing transcription of genes related to cancer cell fitness.

5.
J Exp Clin Cancer Res ; 42(1): 61, 2023 Mar 11.
Article in English | MEDLINE | ID: mdl-36906664

ABSTRACT

We recently identified CD46 as a novel prostate cancer cell surface antigen that shows lineage independent expression in both adenocarcinoma and small cell neuroendocrine subtypes of metastatic castration resistant prostate cancer (mCRPC), discovered an internalizing human monoclonal antibody YS5 that binds to a tumor selective CD46 epitope, and developed a microtubule inhibitor-based antibody drug conjugate that is in a multi-center phase I trial for mCRPC (NCT03575819). Here we report the development of a novel CD46-targeted alpha therapy based on YS5. We conjugated 212Pb, an in vivo generator of alpha-emitting 212Bi and 212Po, to YS5 through the chelator TCMC to create the radioimmunoconjugate, 212Pb-TCMC-YS5. We characterized 212Pb-TCMC-YS5 in vitro and established a safe dose in vivo. We next studied therapeutic efficacy of a single dose of 212Pb-TCMC-YS5 using three prostate cancer small animal models: a subcutaneous mCRPC cell line-derived xenograft (CDX) model (subcu-CDX), an orthotopically grafted mCRPC CDX model (ortho-CDX), and a prostate cancer patient-derived xenograft model (PDX). In all three models, a single dose of 0.74 MBq (20 µCi) 212Pb-TCMC-YS5 was well tolerated and caused potent and sustained inhibition of established tumors, with significant increases of survival in treated animals. A lower dose (0.37 MBq or 10 µCi 212Pb-TCMC-YS5) was also studied on the PDX model, which also showed a significant effect on tumor growth inhibition and prolongation of animal survival. These results demonstrate that 212Pb-TCMC-YS5 has an excellent therapeutic window in preclinical models including PDXs, opening a direct path for clinical translation of this novel CD46-targeted alpha radioimmunotherapy for mCRPC treatment.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Radioimmunotherapy , Male , Animals , Humans , Radioimmunotherapy/methods , Lead , Alpha Particles , Prostatic Neoplasms, Castration-Resistant/drug therapy , Lead Radioisotopes/therapeutic use , Membrane Cofactor Protein
6.
Sci Rep ; 11(1): 10826, 2021 05 24.
Article in English | MEDLINE | ID: mdl-34031486

ABSTRACT

Head and neck cancer is the sixth most common cancer worldwide with a 5-year survival of only 65%. Targeting compensatory signaling pathways may improve therapeutic responses and combat resistance. Utilizing reverse phase protein arrays (RPPA) to assess the proteome and explore mechanisms of synergistic growth inhibition in HNSCC cell lines treated with IGF1R and Src inhibitors, BMS754807 and dasatinib, respectively, we identified focal adhesion signaling as a critical node. Focal Adhesion Kinase (FAK) and Paxillin phosphorylation were decreased as early as 15 min after treatment, and treatment with a FAK inhibitor, PF-562,271, was sufficient to decrease viability in vitro. Treatment of 3D spheroids demonstrated robust cytotoxicity suggesting that the combination of BMS754807 and dasatinib is effective in multiple experimental models. Furthermore, treatment with BMS754807 and dasatinib significantly decreased cell motility, migration, and invasion in multiple HNSCC cell lines. Most strikingly, treatment with BMS754807 and dasatinib, or a FAK inhibitor alone, significantly increased cleaved-PARP in human ex-vivo HNSCC patient tissues demonstrating a potential clinical utility for targeting FAK or the combined targeting of the IGF1R with Src. This ex-vivo result further confirms FAK as a vital signaling node of this combinatorial treatment and demonstrates therapeutic potential for targeting FAK in HNSCC patients.


Subject(s)
Dasatinib/pharmacology , Focal Adhesion Kinase 1/metabolism , Head and Neck Neoplasms/metabolism , Indoles/pharmacology , Pyrazoles/pharmacology , Squamous Cell Carcinoma of Head and Neck/metabolism , Sulfonamides/pharmacology , Triazines/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Synergism , Gene Expression Regulation, Neoplastic/drug effects , Head and Neck Neoplasms/drug therapy , Humans , Paxillin/metabolism , Phosphorylation/drug effects , Protein Array Analysis , Signal Transduction/drug effects , Squamous Cell Carcinoma of Head and Neck/drug therapy
7.
Sci Rep ; 11(1): 5535, 2021 03 10.
Article in English | MEDLINE | ID: mdl-33692370

ABSTRACT

Lung cancer rates are rising globally and non-small cell lung cancer (NSCLC) has a five year survival rate of only 24%. Unfortunately, the development of drugs to treat cancer is severely hampered by the inefficiency of translating pre-clinical studies into clinical benefit. Thus, we sought to apply a tumor microenvironment system (TMES) to NSCLC. Using microvascular endothelial cells, lung cancer derived fibroblasts, and NSCLC tumor cells in the presence of in vivo tumor-derived hemodynamic flow and transport, we demonstrate that the TMES generates an in-vivo like biological state and predicts drug response to EGFR inhibitors. Transcriptomic and proteomic profiling indicate that the TMES recapitulates the in vivo and patient molecular biological state providing a mechanistic rationale for the predictive nature of the TMES. This work further validates the TMES for modeling patient tumor biology and drug response indicating utility of the TMES as a predictive tool for drug discovery and development and potential for use as a system for patient avatars.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , Endothelial Cells/metabolism , Lung Neoplasms/metabolism , Models, Biological , Tumor Microenvironment , Animals , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Endothelial Cells/pathology , Humans , Lung Neoplasms/pathology , Mice , Mice, Nude , Mice, SCID
8.
FEBS J ; 288(21): 6112-6126, 2021 11.
Article in English | MEDLINE | ID: mdl-33682350

ABSTRACT

Prostate cancer (PCa) is a very complex disease that is a major cause of death in men worldwide. Currently, PCa dependence on the androgen receptor (AR) has resulted in use of AR antagonists and antiandrogen therapies that reduce endogenous steroid hormone production. However, within two to three years of receiving first-line androgen deprivation therapy, the majority of patients diagnosed with PCa progress to castration-resistant prostate cancer (CRPC). There is an urgent need for therapies that are more durable than antagonism of the AR axis. Studies of runt-related transcription factors (RUNX) and their heterodimerization partner, core-binding factor subunit b (CBFß), are revealing that the RUNX family are drivers of CRPC. In this review, we describe what is presently understood about RUNX members in PCa, including what regulates and is regulated by RUNX proteins, and the role of RUNX proteins in the tumor microenvironment and AR signaling. We discuss the implications for therapeutically targeting RUNX, the potential for RUNX as PCa biomarkers, and the current pressing questions in the field.


Subject(s)
Core Binding Factor alpha Subunits/metabolism , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms/metabolism , Transcription Factors/metabolism , Androgen Antagonists/therapeutic use , Humans , Male , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms, Castration-Resistant/drug therapy , Receptors, Androgen/metabolism
9.
Oncogene ; 40(6): 1106-1117, 2021 02.
Article in English | MEDLINE | ID: mdl-33323969

ABSTRACT

Expression of the androgen receptor splice variant 7 (AR-V7) is frequently detected in castrate resistant prostate cancer and associated with resistance to AR-targeted therapies. While we have previously noted that homodimerization is required for the transcriptional activity of AR-V7 and that AR-V7 can also form heterodimers with the full-length AR (AR-FL), there are still many gaps of knowledge in AR-V7 stepwise activation. In the present study, we show that neither AR-V7 homodimerization nor AR-V7/AR-FL heterodimerization requires cofactors or DNA binding. AR-V7 can enter the nucleus as a monomer and drive a transcriptional program and DNA-damage repair as a homodimer. While forming a heterodimer with AR-FL to induce nuclear localization of unliganded AR-FL, AR-V7 does not need to interact with AR-FL to drive gene transcription or DNA-damage repair in prostate cancer cells that co-express AR-V7 and AR-FL. These data indicate that AR-V7 can function independently of its interaction with AR-FL in the true castrate state or "absence of ligand", providing support for the utility of targeting AR-V7 in improving outcomes of patients with castrate resistant prostate cancer.


Subject(s)
Alternative Splicing/genetics , Prostatic Neoplasms/genetics , Protein Isoforms/genetics , Receptors, Androgen/genetics , Cell Line, Tumor , Cell Nucleus/genetics , DNA Damage/genetics , DNA Repair/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Male , Prostate/pathology , Prostatic Neoplasms/pathology
10.
J Healthc Inform Res ; 5(4): 401-419, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35419511

ABSTRACT

Cortisol is a glucocorticoid hormone that is critical to immune system functioning. Studies show that prolonged exposure to high levels of cortisol can lead to a range of physical health ailments including the progression of tumor growth. The ability to monitor cortisol levels over time can therefore be used to facilitate decision-making during cancer treatment. However, collecting serum or saliva samples to monitor cortisol in situ is inconvenient, costly, and impractical. In this paper, we propose a general predictive modeling process that uses passively sensed actigraphy data to predict underlying salivary cortisol levels using graph representation learning. We compare machine learning models with handcrafted feature engineering and with graph representation learning, which includes Graph2Vec, FeatherGraph, GeoScattering and NetLSD. Our preliminary results generated from data from 10 newly diagnosed pancreatic cancer patients demonstrate that machine learning models with graph representation learning can outperform the handcrafted feature engineering to predict salivary cortisol levels.

11.
Clin Cancer Res ; 27(5): 1305-1315, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33293372

ABSTRACT

PURPOSE: We recently identified CD46 as a novel therapeutic target in prostate cancer. In this study, we developed a CD46-targeted PET radiopharmaceutical, [89Zr]DFO-YS5, and evaluated its performance for immunoPET imaging in murine prostate cancer models. EXPERIMENTAL DESIGN: [89Zr]DFO-YS5 was prepared and its in vitro binding affinity for CD46 was measured. ImmunoPET imaging was conducted in male athymic nu/nu mice bearing DU145 [AR-, CD46+, prostate-specific membrane antigen-negative (PSMA-)] or 22Rv1 (AR+, CD46+, PSMA+) tumors, and in NOD/SCID gamma mice bearing patient-derived adenocarcinoma xenograft, LTL-331, and neuroendocrine prostate cancers, LTL-331R and LTL-545. RESULTS: [89Zr]DFO-YS5 binds specifically to the CD46-positive human prostate cancer DU145 and 22Rv1 xenografts. In biodistribution studies, the tumor uptake of [89Zr]DFO-YS5 was 13.3 ± 3.9 and 11.2 ± 2.5 %ID/g, respectively, in DU145 and 22Rv1 xenografts, 4 days postinjection. Notably, [89Zr]DFO-YS5 demonstrated specific uptake in the PSMA- and AR-negative DU145 model. [89Zr]DFO-YS5 also showed uptake in the patient-derived LTL-331 and -331R models, with particularly high uptake in the LTL-545 neuroendocrine prostate cancer tumors (18.8 ± 5.3, 12.5 ± 1.8, and 32 ± 5.3 %ID/g in LTL-331, LTL-331R, and LTL-545, respectively, at 4 days postinjection). CONCLUSIONS: [89Zr]DFO-YS5 is an excellent PET imaging agent across a panel of prostate cancer models, including in both adenocarcinoma and neuroendocrine prostate cancer, both cell line- and patient-derived xenografts, and both PSMA-positive and -negative tumors. It demonstrates potential for clinical translation as an imaging agent, theranostic platform, and companion biomarker in prostate cancer.


Subject(s)
Adenocarcinoma/pathology , Immunoconjugates/chemistry , Membrane Cofactor Protein/immunology , Molecular Imaging/methods , Neuroendocrine Tumors/pathology , Prostatic Neoplasms/pathology , Radiopharmaceuticals/pharmacokinetics , Adenocarcinoma/diagnostic imaging , Adenocarcinoma/immunology , Adenocarcinoma/metabolism , Animals , Apoptosis , Cell Proliferation , Humans , Male , Mice , Mice, Inbred NOD , Mice, Nude , Mice, SCID , Neuroendocrine Tumors/diagnostic imaging , Neuroendocrine Tumors/immunology , Neuroendocrine Tumors/metabolism , Positron-Emission Tomography/methods , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/immunology , Prostatic Neoplasms/metabolism , Tissue Distribution , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , Zirconium/chemistry
12.
Elife ; 92020 06 24.
Article in English | MEDLINE | ID: mdl-32579110

ABSTRACT

We have previously demonstrated that checkpoint kinase 2 (CHK2) is a critical negative regulator of androgen receptor (AR) transcriptional activity, prostate cancer (PCa) cell growth, and androgen sensitivity. We have now uncovered that the AR directly interacts with CHK2 and ionizing radiation (IR) increases this interaction. This IR-induced increase in AR-CHK2 interactions requires AR phosphorylation and CHK2 kinase activity. PCa associated CHK2 mutants with impaired kinase activity reduced IR-induced AR-CHK2 interactions. The destabilization of AR - CHK2 interactions induced by CHK2 variants impairs CHK2 negative regulation of cell growth. CHK2 depletion increases transcription of DNAPK and RAD54, increases clonogenic survival, and increases resolution of DNA double strand breaks. The data support a model where CHK2 sequesters the AR through direct binding decreasing AR transcription and suppressing PCa cell growth. CHK2 mutation or loss of expression thereby leads to increased AR transcriptional activity and survival in response to DNA damage.


Subject(s)
Checkpoint Kinase 2/metabolism , Prostatic Neoplasms/metabolism , Receptors, Androgen/metabolism , Cell Line, Tumor , Cell Survival , Checkpoint Kinase 2/genetics , DNA Repair , Humans , Immunoprecipitation , Male , Phosphorylation , Protein Binding , Radiation, Ionizing
13.
Mol Cancer Res ; 18(9): 1392-1401, 2020 09.
Article in English | MEDLINE | ID: mdl-32467173

ABSTRACT

EGFR inhibitors have shown poor efficacy in head and neck squamous cell carcinoma (HNSCC) with demonstrated involvement of the insulin-like growth factor-1 receptor (IGF1R) in resistance to EGFR inhibition. IGF1R activates the PI3K-Akt pathway, which phosphorylates proline-rich Akt substrate of 40 kDa (PRAS40) to cease mTOR inhibition resulting in increased mTOR signaling. Proliferation assays separated six HNSCC cell lines into two groups: sensitive to EGFR inhibition or resistant; all sensitive cell lines demonstrated reduced sensitivity to EGFR inhibition upon IGF1R activation. Reverse phase protein microarray analysis and immunoblot identified a correlation between increased PRAS40 phosphorylation and IGFR-mediated resistance to EGFR inhibition. In sensitive cell lines, PRAS40 phosphorylation decreased 44%-80% with EGFR inhibition and was restored to 98%-196% of control by IGF1R activation, while phosphorylation was unaffected in resistant cell lines. Possible involvement of mTOR in this resistance mechanism was demonstrated through a similar pattern of p70S6K phosphorylation. However, addition of temsirolimus, an mTORC1 inhibitor, was insufficient to overcome IGF1R-mediated resistance and suggested an alternative mechanism. Forkhead box O3a (FOXO3a), which has been reported to complex with PRAS40 in the cytoplasm, demonstrated a 6-fold increase in nuclear to cytoplasmic ratio upon EGFR inhibition that was eliminated with concurrent IGF1R activation. Transcription of FOXO3a-regulated TRAIL and PTEN-induced putative kinase-1 (PINK1) was increased with EGFR inhibition in sensitive cell lines; this effect was diminished with IGF1R stimulation. IMPLICATIONS: These data suggest PRAS40 may play an important role in IGF1R-based therapeutic resistance to EGFR inhibition, and this likely occurs via inhibition of FOXO3a-mediated proapoptotic gene transcription.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Head and Neck Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , Receptor, IGF Type 1/metabolism , Squamous Cell Carcinoma of Head and Neck/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm , ErbB Receptors/antagonists & inhibitors , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/pathology , Humans , Insulin-Like Growth Factor I/metabolism , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Mechanistic Target of Rapamycin Complex 1/metabolism , Phosphorylation , Signal Transduction , Sirolimus/analogs & derivatives , Sirolimus/pharmacology , Squamous Cell Carcinoma of Head and Neck/drug therapy , TOR Serine-Threonine Kinases/metabolism
14.
Laryngoscope ; 130(6): 1470-1478, 2020 06.
Article in English | MEDLINE | ID: mdl-31433065

ABSTRACT

OBJECTIVES: The insulin-like growth factor-1 receptor (IGF1R) has been implicated in therapeutic resistance in head and neck squamous cell carcinoma (HNSCC), and small molecule tyrosine kinase inhibitors (TKIs) of IGF1R activity may have anticancer activity. Therefore, the relationship between survival and IGF1R expression was assessed for oral cavity (OC) cancer, and the antitumor effects of two IGF1R-TKIs, OSI-906 and BMS-754807, were evaluated in HNSCC cell lines in vitro. METHODS: Clinical outcome data and tissue microarray immunohistochemistry were used to generate IGF1R expression-specific survival curves. Immunoblot, alamarBlue proliferation assay, trypan blue exclusion viability test, clonogenic assay, flow cytometry, and reverse phase protein array (RPPA) were used to evaluate in vitro responses to IGF1R-TKIs. RESULTS: For patients with stage III/IV OCSCC, higher IGF1R expression was associated with poorer overall 5-year survival (P = 0.029). Both BMS-754807 and OSI-906 caused dose-dependent inhibition of IGF1R and Akt phosphorylation and inhibited proliferation; BMS-754807 was more potent than OSI-906. Both drugs reduced HNSCC cell viability; only OSI-906 was able to eliminate all viable cells at 10 µM. The two drugs similarly inhibited clonogenic cell survival. At 1 µM, only BMS-754807 caused a fourfold increase in the basal apoptotic rate. RPPA demonstrated broad effects of both drugs on canonical IGF1R signaling pathways and also inhibition of human epidermal growth factor receptor-3 (HER3), Src, paxillin, and ezrin phosphorylation. CONCLUSION: OSI-906 and BMS-754807 inhibit IGF1R activity in HNSCC cell lines with reduction in prosurvival and proliferative signaling and with concomitant antiproliferative and proapoptotic effects. Such antagonists may have utility as adjuvants to existing therapies for HNSCC. LEVEL OF EVIDENCE: NA Laryngoscope, 130:1470-1478, 2020.


Subject(s)
Head and Neck Neoplasms/drug therapy , Imidazoles/therapeutic use , Insulin-Like Growth Factor I/antagonists & inhibitors , Pyrazines/therapeutic use , Pyrazoles/therapeutic use , Squamous Cell Carcinoma of Head and Neck/drug therapy , Triazines/therapeutic use , Head and Neck Neoplasms/pathology , Humans , Imidazoles/pharmacology , Insulin-Like Growth Factor I/biosynthesis , Mouth Neoplasms/drug therapy , Neoplasm Staging , Pyrazines/pharmacology , Pyrazoles/pharmacology , Squamous Cell Carcinoma of Head and Neck/pathology , Treatment Outcome , Triazines/pharmacology , Tumor Cells, Cultured
15.
Mol Cancer ; 18(1): 113, 2019 06 28.
Article in English | MEDLINE | ID: mdl-31253147

ABSTRACT

BACKGROUND: Virtually all patients with metastatic prostate cancer (PCa) will relapse and develop lethal castration-resistant prostate cancer (CRPC). Long noncoding RNAs (lncRNAs) are emerging as critical regulatory elements of many cellular biological processes, and may serve as therapeutic targets for combating PCa progression. Here, we have discovered in a high-throughput RNAi screen a novel lncRNA in PCa, and assessed the oncogenic effects of this lncRNA. METHODS: Rapid amplification of cDNA ends and sequencing was utilized to identify a previously unannotated lncRNA lying within exon six and the 3'UTR of the lymphocyte-specific protein tyrosine kinase (LCK) gene. The levels of HULLK in the presence or absence of hormone and/or enzalutamide or coregulator inhibitors were measured by quantitative PCR (qPCR). The determination of HULLK transcription and localization were characterized by strand-specific qPCR and cellular fractionation followed by qPCR, respectively. The correlation between HULLK expression and prostate cancer Gleason score was analyzed by droplet digital PCR. CyQuant assays were conducted to evaluate the effects of knocking down HULLK with shRNAs or overexpressing HULLK on cell growth. RESULTS: In this study, a previously unannotated lncRNA lying within exon six and 3'UTR of the LCK gene was dramatically upregulated by androgen in a dose-dependent manner, and the anti-androgen enzalutamide completely blocked this hormone-induced increase. Therefore, we labeled this lncRNA "HULLK" for Hormone-Upregulated lncRNA within LCK. Binding sites for two AR coregulators p300 and Brd4 reside near the HULLK transcriptional start site (TSS), and inhibitors of these coregulators downregulated HULLK. HULLK is transcribed from the sense strand of DNA, and predominantly localizes to the cytoplasm. HULLK transcripts are not only expressed in prostate cancer cell lines, but also prostate cancer patient tissue. Remarkably, there was a significant positive correlation between HULLK expression and high-grade PCa in multiple cohorts. shRNAs targeting HULLK significantly decreased PCa cell growth. Moreover, cells overexpressing HULLK were hypersensitive to androgen stimulation. CONCLUSIONS: HULLK is a novel lncRNA situated within the LCK gene that may serve as an oncogene in PCa. Our data enhances our understanding of lncRNA biology and may assist in the development of additional biomarkers or more effective therapeutic targets for advanced PCa.


Subject(s)
Gene Expression Regulation, Neoplastic , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics , Prostatic Neoplasms/genetics , RNA, Long Noncoding/genetics , 3' Untranslated Regions , Cell Line, Tumor , Cell Movement , Cell Proliferation , Humans , Male , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , RNA Interference , Receptors, Androgen/metabolism
16.
Lab Chip ; 19(7): 1193-1204, 2019 03 27.
Article in English | MEDLINE | ID: mdl-30839006

ABSTRACT

The development of drugs to treat cancer is hampered by the inefficiency of translating pre-clinical in vitro monoculture and mouse studies into clinical benefit. There is a critical need to improve the accuracy of evaluating pre-clinical drug efficacy through the development of more physiologically relevant models. In this study, a human triculture 3D in vitro tumor microenvironment system (TMES) was engineered to accurately mimic the tumor microenvironment. The TMES recapitulates tumor hemodynamics and biological transport with co-cultured human microvascular endothelial cells, pancreatic ductal adenocarcinoma, and pancreatic stellate cells. We demonstrate that significant tumor cell transcriptomic changes occur in the TMES that correlate with the in vivo xenograft and patient transcriptome. Treatment with therapeutically relevant doses of chemotherapeutics yields responses paralleling the patients' clinical responses. Thus, this model provides a unique platform to rigorously evaluate novel therapies and is amenable to using patient tumor material directly, with applicability for patient avatars.


Subject(s)
Biomimetics/methods , Carcinoma, Pancreatic Ductal/pathology , Tumor Microenvironment , Cell Proliferation/drug effects , Humans , Tumor Microenvironment/drug effects
17.
Front Oncol ; 9: 13, 2019.
Article in English | MEDLINE | ID: mdl-30729097

ABSTRACT

Epidermal growth factor receptor (EGFR) inhibitors have limited efficacy in head and neck squamous cell carcinoma (HNSCC) due to various resistance mechanisms, such as activation of the insulin-like growth factor-1 receptor (IGF1R), which initiates pro-survival signaling. Survivin, a member of the inhibitor of apoptosis proteins family, is expressed at relatively high levels in malignant tissues and plays a role in cell division. Expression of survivin in tumors has been shown to correlate with poor prognosis due to chemotherapy resistance and anti-apoptotic behavior. We previously demonstrated that activation of the IGF1R reduces sensitivity to EGFR-tyrosine kinase inhibitors (TKIs) via reduced apoptosis suggesting a role of survivin in this process. This study evaluates the role of survivin in IGF1R-mediated lapatinib resistance. Using HNSCC cell lines FaDu and SCC25, survivin expression increased and lapatinib sensitivity decreased with IGF1R activation. Further, these effects were reversed by the survivin inhibitor YM-155. Conversely, survivin expression and lapatinib sensitivity were unchanged with IGF1R activation in UNC10 cells. YM-155 enhanced the inhibitory effect of lapatinib on UNC10 cells, regardless of activation of the IGF1R. These results demonstrate that enhanced survivin expression correlates with IGF1R-mediated lapatinib resistance in HNSCC cells and suggest that regulation of survivin expression may be a key mechanistic element in IGF1R-based therapeutic resistance. Combinatorial treatment with survivin antagonists and EGFR-TKIs warrants further investigation.

18.
Otolaryngol Head Neck Surg ; 158(5): 882-888, 2018 05.
Article in English | MEDLINE | ID: mdl-29313435

ABSTRACT

Objective Patients with head and neck squamous cell carcinoma (HNSCC) have significant wound-healing difficulties. While adipose-derived stem cells (ASCs) facilitate wound healing, ASCs may accelerate recurrence when applied to a cancer field. This study evaluates the impact of ASCs on HNSCC cell lines in vitro and in vivo. Study Design In vitro experiments using HNSCC cell lines and in vivo mouse experiments. Setting Basic science laboratory. Subjects and Methods Impact of ASCs on in vitro proliferation, survival, and migration was assessed using 8 HNSCC cell lines. One cell line was used in a mouse orthotopic xenograft model to evaluate in vivo tumor growth in the presence and absence of ASCs. Results Addition of ASCs did not increase the number of HNSCC cells. In clonogenic assays to assess cell survival, addition of ASCs increased colony formation only in SCC9 cells (maximal effect 2.3-fold, P < .02) but not in other HNSCC cell lines. In scratch assays to assess migration, fluorescently tagged ASCs did not migrate appreciably and did not increase the rate of wound closure in HNSCC cell lines. Addition of ASCs to HNSCC xenografts did not increase tumor growth. Conclusion Using multiple in vitro and in vivo approaches, ASCs did not significantly stimulate HNSCC cell proliferation or migration and increased survival in only a single cell line. These findings preliminarily suggest that the use of ASCs may be safe in the setting of HNSCC but that further investigation on the therapeutic use of ASCs in the setting of HNSCC is needed.


Subject(s)
Adipose Tissue , Squamous Cell Carcinoma of Head and Neck/pathology , Stem Cells , Animals , Cell Culture Techniques , Cell Line, Tumor , Cell Proliferation , Cell Survival , Disease Models, Animal , Female , Humans , Mice , Mice, Nude
19.
Neuro Oncol ; 20(2): 192-202, 2018 01 22.
Article in English | MEDLINE | ID: mdl-29048560

ABSTRACT

Background: The mesenchymal phenotype in glioblastoma (GBM) and other cancers drives aggressiveness and treatment resistance, leading to therapeutic failure and recurrence of disease. Currently, there is no successful treatment option available against the mesenchymal phenotype. Methods: We classified patient-derived GBM stem cell lines into 3 subtypes: proneural, mesenchymal, and other/classical. Each subtype's response to the inhibition of diacylglycerol kinase alpha (DGKα) was compared both in vitro and in vivo. RhoA activation, liposome binding, immunoblot, and kinase assays were utilized to elucidate the novel link between DGKα and geranylgeranyltransferase I (GGTase I). Results: Here we show that inhibition of DGKα with a small-molecule inhibitor, ritanserin, or RNA interference preferentially targets the mesenchymal subtype of GBM. We show that the mesenchymal phenotype creates the sensitivity to DGKα inhibition; shifting GBM cells from the proneural to the mesenchymal subtype increases ritanserin activity, with similar effects in epithelial-mesenchymal transition models of lung and pancreatic carcinoma. This enhanced sensitivity of mesenchymal cancer cells to ritanserin is through inhibition of GGTase I and downstream mediators previously associated with the mesenchymal cancer phenotype, including RhoA and nuclear factor-kappaB. DGKα inhibition is synergistic with both radiation and imatinib, a drug preferentially affecting proneural GBM. Conclusions: Our findings demonstrate that a DGKα-GGTase I pathway can be targeted to combat the treatment-resistant mesenchymal cancer phenotype. Combining therapies with greater activity against each GBM subtype may represent a viable therapeutic option against GBM.


Subject(s)
Brain Neoplasms/drug therapy , Diacylglycerol Kinase/antagonists & inhibitors , Glioblastoma/pathology , Ritanserin/pharmacology , Animals , Brain Neoplasms/pathology , Cell Line, Tumor , Diacylglycerol Kinase/genetics , Female , Humans , Mice, Inbred BALB C , NF-kappa B/metabolism , Signal Transduction/drug effects
20.
Cancer Res ; 76(17): 5163-74, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27450452

ABSTRACT

Androgen receptor signaling fuels prostate cancer and is a major therapeutic target. However, mechanisms of resistance to therapeutic androgen ablation are not well understood. Here, using a prostate cancer mouse model, Pten(pc-/-), carrying a prostate epithelial-specific Pten deletion, we show that the αvß6 integrin is required for tumor growth in vivo of castrated as well as of noncastrated mice. We describe a novel signaling pathway that couples the αvß6 integrin cell surface receptor to androgen receptor via activation of JNK1 and causes increased nuclear localization and activity of androgen receptor. This downstream kinase activation by αvß6 is specific for JNK1, with no involvement of p38 or ERK kinase. In addition, differential phosphorylation of Akt is not observed under these conditions, nor is cell morphology affected by αvß6 expression. This pathway, which is specific for αvß6, because it is not regulated by a different αv-containing integrin, αvß3, promotes upregulation of survivin, which in turn supports anchorage-independent growth of αvß6-expressing cells. Consistently, both αvß6 and survivin are significantly increased in prostatic adenocarcinoma, but are not detected in normal prostatic epithelium. Neither XIAP nor Bcl-2 is affected by αvß6 expression. In conclusion, we show that αvß6 expression is required for prostate cancer progression, including castrate-resistant prostate cancer; mechanistically, by promoting activation of JNK1, the αvß6 integrin causes androgen receptor-increased activity in the absence of androgen and consequent upregulation of survivin. These preclinical results pave the way for further clinical development of αvß6 antagonists for prostate cancer therapy. Cancer Res; 76(17); 5163-74. ©2016 AACR.


Subject(s)
Antigens, Neoplasm/metabolism , Integrins/metabolism , Mitogen-Activated Protein Kinase 8/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Receptors, Androgen/metabolism , Animals , Cell Line, Tumor , Disease Models, Animal , Flow Cytometry , Fluorescent Antibody Technique , Gene Knockdown Techniques , Humans , Immunohistochemistry , Male , Mice , Mice, Knockout , Prostatic Neoplasms, Castration-Resistant/metabolism , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...