Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(8): e29356, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38644898

ABSTRACT

Landfills play a key role as greenhouse gas (GHGs) emitters, and urgently need assessment and management plans development to swiftly reduce their climate impact. In this context, accurate emission measurements from landfills under different climate and management would reduce the uncertainty in emission accounting. In this study, more than one year of long-term high-frequency data of CO2 and CH4 fluxes were collected in two Italian landfills (Giugliano and Case Passerini) with contrasting management (gas recovery VS no management) using eddy covariance (EC), with the aim to i) investigate the relation between climate drivers and CO2 and CH4 fluxes at different time intervals and ii) to assess the overall GHG balances including the biogas extraction and energy recovery components. Results indicated a higher net atmospheric CO2 source (5.7 ± 5.3 g m2 d-1) at Giugliano compared to Case Passerini (2.4 ± 4.9 g m2 d-1) as well as one order of magnitude higher atmospheric CH4 fluxes (6.0 ± 5.7 g m2 d-1 and 0.7 ± 0.6 g m2 d-1 respectively). Statistical analysis highlighted that fluxes were mainly driven by thermal variables, followed by water availability, with their relative importance changing according to the time-interval considered. The rate of change in barometric pressure (dP/dt) influenced CH4 patterns and magnitude in the classes ranging from -1.25 to +1.25 Pa h-1, with reduction when dP/dt > 0 and increase when dP/dt < 0, whilst a clear pattern was not observed when all dP/dt classes were analyzed. When including management, the total atmospheric GHG balance computed for the two landfills of Giugliano and Case Passerini was 174 g m2 d-1 and 79 g m2 d-1 respectively, of which 168 g m2 d-1 and 20 g m2 d-1 constituted by CH4 fluxes.

2.
Sci Total Environ ; 842: 156843, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-35750179

ABSTRACT

Urban afforestation is considered a promising nature-climate solution that may contribute to achieve climate neutrality by 2050, since it can increase C-storage and C-sequestration, whilst providing further multiple ecosystem services for citizens. However, the quantification of the CO2 sequestration capacity that may be provided by an urban forest as well as the capacity to impact the city-level C-balance and offset anthropogenic emissions is a complex issue. Methodological approaches, quantity and quality of information contained in urban tree database, and the level of detail of the planned urban forest can strongly influence the estimation of C-sequestration potential offered by urban forests. In this work, an integrated framework based on emission inventory, tree species/morphology and ecosystem modelling has been proposed for the city of Prato, Italy, a representative medium size European city to: i) evaluate the current C-sequestration capacity of urban trees; ii) upscale such capacity with different afforestation scenarios, iii) compare the sink capacity offered by ecosystems with current and projected anthropogenic emissions. Results indicated that the green areas within the Municipality of Prato can sequester 33.1 ktCO2 yr-1 under actual conditions and 51.0 ktCO2 yr-1 under the afforestation scenario which maximize the CO2 sequestration capacity, offsetting the 7.1 % and 11 % of the total emissions (465.8 ktCO2 yr-1), respectively. This study proves that, in the various afforestation scenarios tested, the contribution of urban afforestation to the municipality carbon balance is negligible and that carbon neutrality can only be reached by the substantial decarbonization of emission sectors.


Subject(s)
Carbon Sequestration , Carbon , Carbon Dioxide , Ecosystem , Forests , Trees
3.
Sci Total Environ ; 698: 134245, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31494422

ABSTRACT

In this study, the results of a continuous monitoring of (i) CO2 fluxes, and (ii) CO2 and CH4 concentrations and carbon isotopic ratios (δ13C-CO2 and δ13C-CH4) in air, carried out from 7 to 21 July 2017 and from October 10 to December 15, 2017 in the city centre of Florence, are presented. The measurements were performed from the roof of the historical building of the Ximenes Observatory. CO2 flux data revealed that the metropolitan area acted as a net source of CO2 during the whole observation period. According to the Keeling plot analysis, anthropogenic contributions to atmospheric CO2 were mainly represented by vehicular traffic (about 30%) and natural gas combustion (about 70%), the latter contributing 7 times more in December than in July. Moreover, the measured CO2 fluxes were about 80% higher in fall than in summer, confirming that domestic heating based on natural gas is the dominant CO2 emitting source in the municipality of Florence. Even though the continuous monitoring revealed a shift in the δ13C-CO2 values related to photosynthetic uptake of atmospheric CO2, the isotopic effect induced by plant activity was restricted to few hours in October and, to a lesser extent, in November. This suggests that urban planning policies should be devoted to massively increase green infrastructures in the metropolitan area in order to counterbalance anthropogenic emissions. During fall, the atmospheric CH4 concentrations were sensibly higher with respect to those recorded in summer, whilst the δ13C-CH4 values shifted towards heavier values. The Keeling plot analysis suggested that urban CH4 emissions were largely related to fugitive emissions from the natural gas distribution pipeline network. On the other hand, δ13C-CH4 monitoring allowed to recognize vehicular traffic as a minor CH4 emitting source.

4.
Environ Pollut ; 254(Pt B): 112987, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31454579

ABSTRACT

A mass balance approach to quantify methane (CH4) emission of four co-located landfills by means of airborne measurements and dispersion modelling was proposed and assessed. By flying grids at different heights above the landfills, atmospheric CH4 densities and wind components were measured along the edges and inside the study atmospheric volume, in order to calculate mass flows in the along- and across-wind directions. A steady-state Gaussian dispersion model was applied to build the concentration fields associated to unit emission from each landfill, while the contribution of each one to the total emission was assessed using a General Linear Model approach, minimizing the difference between measured and modeled mass flows. Results showed that wind spatial and temporal variability is the main factor controlling the accuracy of the method, as a good agreement between measured and modeled mass flows was mainly found for flights made in steady wind conditions. CH4 emissions of the entire area ranged from 213.5 ±â€¯33.5 to 317.9 ±â€¯90.4 g s-1 with a mean value of 252.5 ±â€¯54.2 g s-1. Contributions from individual sources varied from 17.5 to 40.1 g m-2 day-1 indicating a substantial heterogeneity of the different landfills, which differed in age and waste composition. The proposed method was validated against tower eddy covariance flux measurements made at one of the landfills, revealing an overall agreement within 20%.


Subject(s)
Air Pollutants/analysis , Methane/analysis , Aircraft , Environmental Monitoring , Linear Models , Refuse Disposal , Waste Disposal Facilities , Wind
5.
Environ Pollut ; 184: 201-10, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24060739

ABSTRACT

Tropospheric O3 is a strong oxidant that may affect vegetation and human health. Here we report on the O3 fluxes from a poplar plantation in Belgium during one year. Surprisingly, the winter and autumn O3 fluxes were of similar magnitude to ones observed during most of the peak vegetation development. Largest O3 uptakes were recorded at the beginning of the growing season in correspondence to a minimum stomatal uptake. Wind speed was the most important control and explained 44% of the variability in the nighttime O3 fluxes, suggesting that turbulent mixing and the mechanical destruction of O3 played a substantial role in the O3 fluxes. The stomatal O3 uptake accounted for a seasonal average of 59% of the total O3 uptake. Multiple regression and partial correlation analyses showed that net ecosystem exchange was not affected by the stomatal O3 uptake.


Subject(s)
Air Pollutants/analysis , Ozone/analysis , Populus/physiology , Agriculture , Air Pollution/statistics & numerical data , Belgium , Ecosystem , Environmental Monitoring , Forestry , Humans , Seasons , Wind
6.
Environ Pollut ; 164: 125-31, 2012 May.
Article in English | MEDLINE | ID: mdl-22356753

ABSTRACT

Long-term fluxes of CO(2), and combined short-term fluxes of CH(4) and CO(2) were measured with the eddy covariance technique in the city centre of Florence. CO(2) long-term weekly fluxes exhibit a high seasonality, ranging from 39 to 172% of the mean annual value in summer and winter respectively, while CH(4) fluxes are relevant and don't exhibit temporal variability. Contribution of road traffic and domestic heating has been estimated through multi-regression models combined with inventorial traffic and CH(4) consumption data, revealing that heating accounts for more than 80% of observed CO(2) fluxes. Those two components are instead responsible for only 14% of observed CH(4) fluxes, while the major residual part is likely dominated by gas network leakages. CH(4) fluxes expressed as CO(2) equivalent represent about 8% of CO(2) emissions, ranging from 16% in summer to 4% in winter, and cannot therefore be neglected when assessing greenhouse impact of cities.


Subject(s)
Air Pollutants/analysis , Air Pollution/statistics & numerical data , Carbon Dioxide/analysis , Methane/analysis , Cities , Environmental Monitoring , Italy
7.
Environ Pollut ; 159(5): 1174-82, 2011 May.
Article in English | MEDLINE | ID: mdl-21376441

ABSTRACT

Observation and characterization of environmental pollution, focussing on Volatile Organic Compounds (VOCs), in a high-risk industrial area, are particularly important in order to provide indications on a safe level of exposure, indicate eventual priorities and advise on policy interventions. The aim of this study is to use the Solid Phase Micro Extraction (SPME) method to measure VOCs, directly coupled with atmospheric measurements taken on a small aircraft environmental platform, to evaluate and locate the presence of VOC emission sources in the Marghera industrial area. Lab analysis of collected SPME fibres and subsequent analysis of mass spectrum and chromatograms in Scan Mode allowed the detection of a wide range of VOCs. The combination of this information during the monitoring campaign allowed a model (Gaussian Plume) to be implemented that estimates the localization of emission sources on the ground.


Subject(s)
Air Pollutants/analysis , Aircraft , Industrial Waste/analysis , Volatile Organic Compounds/analysis , Algorithms , Altitude , Solid Phase Microextraction
SELECTION OF CITATIONS
SEARCH DETAIL
...