Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nat Mater ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969783

ABSTRACT

Morphogenesis requires embryonic cells to generate forces and perform mechanical work to shape their tissues. Incorrect functioning of these force fields can lead to congenital malformations. Understanding these dynamic processes requires the quantification and profiling of three-dimensional mechanics during evolving vertebrate morphogenesis. Here we describe elastic spring-like force sensors with micrometre-level resolution, fabricated by intravital three-dimensional bioprinting directly in the closing neural tubes of growing chicken embryos. Integration of calibrated sensor read-outs with computational mechanical modelling allows direct quantification of the forces and work performed by the embryonic tissues. As they displace towards the embryonic midline, the two halves of the closing neural tube reach a compression of over a hundred nano-newtons during neural fold apposition. Pharmacological inhibition of Rho-associated kinase to decrease the pro-closure force shows the existence of active anti-closure forces, which progressively widen the neural tube and must be overcome to achieve neural tube closure. Overall, our approach and findings highlight the intricate interplay between mechanical forces and tissue morphogenesis.

2.
Nat Commun ; 14(1): 3128, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37253730

ABSTRACT

Three-dimensional hydrogel-based organ-like cultures can be applied to study development, regeneration, and disease in vitro. However, the control of engineered hydrogel composition, mechanical properties and geometrical constraints tends to be restricted to the initial time of fabrication. Modulation of hydrogel characteristics over time and according to culture evolution is often not possible. Here, we overcome these limitations by developing a hydrogel-in-hydrogel live bioprinting approach that enables the dynamic fabrication of instructive hydrogel elements within pre-existing hydrogel-based organ-like cultures. This can be achieved by crosslinking photosensitive hydrogels via two-photon absorption at any time during culture. We show that instructive hydrogels guide neural axon directionality in growing organotypic spinal cords, and that hydrogel geometry and mechanical properties control differential cell migration in developing cancer organoids. Finally, we show that hydrogel constraints promote cell polarity in liver organoids, guide small intestinal organoid morphogenesis and control lung tip bifurcation according to the hydrogel composition and shape.


Subject(s)
Bioprinting , Organoids , Hydrogels/chemistry , Tissue Engineering/methods , Cell Polarity , Lung
3.
Macromol Biosci ; 23(2): e2200357, 2023 02.
Article in English | MEDLINE | ID: mdl-36305383

ABSTRACT

3D constructs are fundamental in tissue engineering and cancer modeling, generating a demand for tailored materials creating a suitable cell culture microenvironment and amenable to be bioprinted. Gelatin methacrylate (GelMA) is a well-known functionalized natural polymer with good printability and binding motifs allowing cell adhesion; however, its tight micropores induce encapsulated cells to retain a non-physiological spherical shape. To overcome this problem, blended GelMa is here blended with Pluronic F-127 (PLU) to modify the hydrogel internal porosity by inducing the formation of larger mesoscale pores. The change in porosity also leads to increased swelling and a slight decrease in Young's modulus. All blends form stable hydrogels both when cast in annular molds and bioprinted in complex structures. Embedded cells maintain high viability, and while Neuroblastoma cancer cells typically aggregate inside the mesoscale pores, Mesenchymal Stem Cells stretch in all three dimensions, forming cell-cell and cell-ECM interactions. The results of this work prove that the combination of tailored porous materials with bioprinting techniques enables to control both the micro and macro architecture of cell-laden constructs, a fundamental aspect for the development of clinically relevant in vitro constructs.


Subject(s)
Bioprinting , Gelatin , Gelatin/pharmacology , Gelatin/chemistry , Porosity , Methacrylates/chemistry , Tissue Engineering/methods , Hydrogels/pharmacology , Hydrogels/chemistry , Bioprinting/methods , Printing, Three-Dimensional , Tissue Scaffolds/chemistry
4.
Transl Res ; 253: 57-67, 2023 03.
Article in English | MEDLINE | ID: mdl-36096350

ABSTRACT

Pancreatic cancer is likely to become one of the leading causes of cancer-related death in many countries within the next decade. Surgery is the potentially curative treatment for pancreatic ductal adenocarcinoma (PDAC), although only 10%-20% of patients have a resectable disease after diagnosis. Despite recent advances in curative surgery the current prognosis ranges from 6% to 10% globally. One of the main issues at the pre-clinical level is the lacking of model which simultaneously reflects the tumour microenvironment (TME) at both structural and cellular levels. Here we describe an innovative tissue engineering approach applied to PDAC starting from decellularized human biopsies in order to generate an organotypic 3D in vitro model. This in vitro 3D system recapitulates the ultrastructural environment of native tissue as demonstrated by histology, immunohistochemistry, immunofluorescence, mechanical analysis, and scanning electron microscopy. Mass spectrometry confirmed a different extracellular matrix (ECM) composition between decellularized healthy pancreas and PDAC by identifying a total of 110 non-redundant differently expressed proteins. Immunofluorescence analyses after 7 days of scaffold recellularization with PANC-1 and AsPC-1 pancreatic cell lines, were performed to assess the biocompatibility of 3D matrices to sustain engraftment, localization and infiltration. Finally, both PANC-1 and AsPC-1 cells cultured in 3D matrices showed a reduced response to treatment with FOLFIRINOX if compared to conventional bi-dimensional culture. Our 3D culture system with patient-derived tissue-specific decellularized ECM better recapitulates the pancreatic cancer microenvironment compared to conventional 2D culture conditions and represents a relevant approach for the study of pancreatic cancer response to chemotherapy agents.


Subject(s)
Adenocarcinoma , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/pathology , Antineoplastic Combined Chemotherapy Protocols , Adenocarcinoma/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Extracellular Matrix/metabolism , Tumor Microenvironment , Pancreatic Neoplasms
5.
Front Bioeng Biotechnol ; 10: 871867, 2022.
Article in English | MEDLINE | ID: mdl-36032711

ABSTRACT

In the last two decades lab-on-chip models, specifically heart-on-chip, have been developed as promising technologies for recapitulating physiological environments suitable for studies of drug and environmental effects on either human physiological or patho-physiological conditions. Most human heart-on-chip systems are based on integration and adaptation of terminally differentiated cells within microfluidic context. This process requires prolonged procedures, multiple steps, and is associated with an intrinsic variability of cardiac differentiation. In this view, we developed a method for cardiac differentiation-on-a-chip based on combining the stage-specific regulation of Wnt/ß-catenin signaling with the forced expression of transcription factors (TFs) that timely recapitulate hallmarks of the cardiac development. We performed the overall cardiac differentiation from human pluripotent stem cells (hPSCs) to cardiomyocytes (CMs) within a microfluidic environment. Sequential forced expression of cardiac TFs was achieved by a sequential mmRNAs delivery of first MESP1, GATA4 followed by GATA4, NKX2.5, MEF2C, TBX3, and TBX5. We showed that this optimized protocol led to a robust and reproducible approach to obtain a cost-effective hiPSC-derived heart-on-chip. The results showed higher distribution of cTNT positive CMs along the channel and a higher expression of functional cardiac markers (TNNT2 and MYH7). The combination of stage-specific regulation of Wnt/ß-catenin signaling with mmRNAs encoding cardiac transcription factors will be suitable to obtain heart-on-chip model in a cost-effective manner, enabling to perform combinatorial, multiparametric, parallelized and high-throughput experiments on functional cardiomyocytes.

6.
Nat Cell Biol ; 24(2): 168-180, 2022 02.
Article in English | MEDLINE | ID: mdl-35165418

ABSTRACT

Metastatic breast cancer cells disseminate to organs with a soft microenvironment. Whether and how the mechanical properties of the local tissue influence their response to treatment remains unclear. Here we found that a soft extracellular matrix empowers redox homeostasis. Cells cultured on a soft extracellular matrix display increased peri-mitochondrial F-actin, promoted by Spire1C and Arp2/3 nucleation factors, and increased DRP1- and MIEF1/2-dependent mitochondrial fission. Changes in mitochondrial dynamics lead to increased production of mitochondrial reactive oxygen species and activate the NRF2 antioxidant transcriptional response, including increased cystine uptake and glutathione metabolism. This retrograde response endows cells with resistance to oxidative stress and reactive oxygen species-dependent chemotherapy drugs. This is relevant in a mouse model of metastatic breast cancer cells dormant in the lung soft tissue, where inhibition of DRP1 and NRF2 restored cisplatin sensitivity and prevented disseminated cancer-cell awakening. We propose that targeting this mitochondrial dynamics- and redox-based mechanotransduction pathway could open avenues to prevent metastatic relapse.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Drug Resistance, Neoplasm , Energy Metabolism/drug effects , Extracellular Matrix/drug effects , Lung Neoplasms/drug therapy , Mechanotransduction, Cellular/drug effects , Mitochondria/drug effects , Mitochondrial Dynamics/drug effects , Actin-Related Protein 2-3 Complex/metabolism , Actins/metabolism , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Transformed , Cell Line, Tumor , Cell-Matrix Junctions/drug effects , Cell-Matrix Junctions/metabolism , Cell-Matrix Junctions/pathology , Dynamins/metabolism , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Female , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Mice, Inbred BALB C , Microfilament Proteins/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Proteins/metabolism , NF-E2-Related Factor 2/metabolism , Nuclear Proteins/metabolism , Oxidation-Reduction , Oxidative Stress , Peptide Elongation Factors/metabolism , Tumor Microenvironment
7.
Biomedicines ; 9(7)2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34206569

ABSTRACT

Hydrogels are biomaterials that, thanks to their unique hydrophilic and biomimetic characteristics, are used to support cell growth and attachment and promote tissue regeneration. The use of decellularized extracellular matrix (dECM) from different tissues or organs significantly demonstrated to be far superior to other types of hydrogel since it recapitulates the native tissue's ECM composition and bioactivity. Different muscle injuries and malformations require the application of patches or fillers to replenish the defect and boost tissue regeneration. Herein, we develop, produce, and characterize a porcine diaphragmatic dECM-derived hydrogel for diaphragmatic applications. We obtain a tissue-specific biomaterial able to mimic the complex structure of skeletal muscle ECM; we characterize hydrogel properties in terms of biomechanical properties, biocompatibility, and adaptability for in vivo applications. Lastly, we demonstrate that dECM-derived hydrogel obtained from porcine diaphragms can represent a useful biological product for diaphragmatic muscle defect repair when used as relevant acellular stand-alone patch.

8.
Nat Biomed Eng ; 4(9): 901-915, 2020 09.
Article in English | MEDLINE | ID: mdl-32572195

ABSTRACT

Fabrication of three-dimensional (3D) structures and functional tissues directly in live animals would enable minimally invasive surgical techniques for organ repair or reconstruction. Here, we show that 3D cell-laden photosensitive polymer hydrogels can be bioprinted across and within tissues of live mice, using bio-orthogonal two-photon cycloaddition and crosslinking of the polymers at wavelengths longer than 850 nm. Such intravital 3D bioprinting-which does not create by-products and takes advantage of commonly available multiphoton microscopes for the accurate positioning and orientation of the bioprinted structures into specific anatomical sites-enables the fabrication of complex structures inside tissues of live mice, including the dermis, skeletal muscle and brain. We also show that intravital 3D bioprinting of donor-muscle-derived stem cells under the epimysium of hindlimb muscle in mice leads to the de novo formation of myofibres in the mice. Intravital 3D bioprinting could serve as an in vivo alternative to conventional bioprinting.


Subject(s)
Bioprinting , Printing, Three-Dimensional , Tissue Engineering/methods , Animals , Hydrogels/administration & dosage , Hydrogels/chemistry , Hydrophobic and Hydrophilic Interactions , Infrared Rays , Injections , Mice , Microscopy, Fluorescence, Multiphoton
9.
PLoS One ; 15(5): e0232081, 2020.
Article in English | MEDLINE | ID: mdl-32374763

ABSTRACT

The reproduction of reliable in vitro models of human skeletal muscle is made harder by the intrinsic 3D structural complexity of this tissue. Here we coupled engineered hydrogel with 3D structural cues and specific mechanical properties to derive human 3D muscle constructs ("myobundles") at the scale of single fibers, by using primary myoblasts or myoblasts derived from embryonic stem cells. To this aim, cell culture was performed in confined, laminin-coated micrometric channels obtained inside a 3D hydrogel characterized by the optimal stiffness for skeletal muscle myogenesis. Primary myoblasts cultured in our 3D culture system were able to undergo myotube differentiation and maturation, as demonstrated by the proper expression and localization of key components of the sarcomere and sarcolemma. Such approach allowed the generation of human myobundles of ~10 mm in length and ~120 µm in diameter, showing spontaneous contraction 7 days after cell seeding. Transcriptome analyses showed higher similarity between 3D myobundles and skeletal signature, compared to that found between 2D myotubes and skeletal muscle, mainly resulting from expression in 3D myobundles of categories of genes involved in skeletal muscle maturation, including extracellular matrix organization. Moreover, imaging analyses confirmed that structured 3D culture system was conducive to differentiation/maturation also when using myoblasts derived from embryonic stem cells. In conclusion, our structured 3D model is a promising tool for modelling human skeletal muscle in healthy and diseases conditions.


Subject(s)
Cell Culture Techniques , Muscle Fibers, Skeletal/cytology , Muscle, Skeletal/cytology , Tissue Engineering , Tissue Scaffolds/chemistry , Animals , Cell Culture Techniques/instrumentation , Cell Culture Techniques/methods , Cell Differentiation , Cells, Cultured , Dimethylpolysiloxanes/chemistry , Humans , Hydrogels/chemistry , Materials Testing , Mice , Models, Biological , Molecular Conformation , Muscle Development , Muscle, Skeletal/physiology , Myoblasts/cytology , Myoblasts/physiology , Single-Cell Analysis/instrumentation , Single-Cell Analysis/methods , Tissue Engineering/instrumentation , Tissue Engineering/methods
10.
Nat Commun ; 10(1): 5658, 2019 12 11.
Article in English | MEDLINE | ID: mdl-31827102

ABSTRACT

Organoids have extensive therapeutic potential and are increasingly opening up new avenues within regenerative medicine. However, their clinical application is greatly limited by the lack of effective GMP-compliant systems for organoid expansion in culture. Here, we envisage that the use of extracellular matrix (ECM) hydrogels derived from decellularized tissues (DT) can provide an environment capable of directing cell growth. These gels possess the biochemical signature of tissue-specific ECM and have the potential for clinical translation. Gels from decellularized porcine small intestine (SI) mucosa/submucosa enable formation and growth of endoderm-derived human organoids, such as gastric, hepatic, pancreatic, and SI. ECM gels can be used as a tool for direct human organoid derivation, for cell growth with a stable transcriptomic signature, and for in vivo organoid delivery. The development of these ECM-derived hydrogels opens up the potential for human organoids to be used clinically.


Subject(s)
Endoderm/growth & development , Extracellular Matrix/metabolism , Organoids/growth & development , Animals , Cell Proliferation , Endoderm/metabolism , Extracellular Matrix/chemistry , Humans , Hydrogels/chemistry , Hydrogels/metabolism , Organoids/metabolism , Swine , Tissue Engineering/instrumentation , Tissue Scaffolds/chemistry
11.
Curr Drug Deliv ; 14(2): 158-178, 2017.
Article in English | MEDLINE | ID: mdl-27264726

ABSTRACT

Modern Chemical Engineering was born around the end of the 19th century in Great Britain, Germany, and the USA, the most industrialized countries at that time. Milton C. Whitaker, in 1914, affirmed that the difference between Chemistry and Chemical Engineering lies in the capability of chemical engineers to transfer laboratory findings to the industrial level. Since then, Chemical Engineering underwent huge transformations determining the detachment from the original Chemistry nest. The beginning of the sixties of the 20th century saw the development of a new branch of Chemical Engineering baptized Biomedical Engineering by Peppas and Langer and that now we can name Biological Engineering. Interestingly, although Biological Engineering focused on completely different topics from Chemical Engineering ones, it resorted to the same theoretical tools such as, for instance, mass, energy and momentum balances. Thus, the birth of Biological Engineering may be considered as a Darwinian evolution of Chemical Engineering similar to that experienced by mammals which, returning to water, used legs and arms to swim. From 1960 on, Biological Engineering underwent a considerable evolution as witnessed by the great variety of topics covered such as hemodialysis, release of synthetic drugs, artificial organs and, more recently, delivery of small interfering RNAs (siRNA). This review, based on the activities developed in the frame of our PRIN 2010-11 (20109PLMH2) project, tries to recount origins and evolution of Chemical Engineering illustrating several examples of recent and successful applications in the biological field. This, in turn, may stimulate the discussion about the Chemical Engineering students curriculum studiorum update.


Subject(s)
Biomedical Engineering , Chemical Engineering , Animals , Humans , Pharmaceutical Preparations
12.
J Mater Chem B ; 1(38): 5083-5091, 2013 Oct 14.
Article in English | MEDLINE | ID: mdl-32261099

ABSTRACT

The development of smart biomaterials able to quantitatively analyse the dynamics of biological systems with high temporal resolution in biomimetic environments is of paramount importance in biophysics, biology and medicine. In this context, we develop a biosensing water-based soft biomaterial with tunable mechanical properties through the generation of an electroconductive nano-element network. As a proof of concept, in order to detect glucose concentration, we fabricate an electroconductive polyacrylamide glucose oxidase (GOx) loaded hydrogel (HY) modified with a small amount of single-walled carbon nanotubes (SWNTs) (up to 0.85 wt%). MicroRaman maps and optical analysis show the nanotube distribution in the samples at different mass fractions. Electrochemical impedance spectra and their fitting with equivalent circuit models reveal electron conduction in the charged hydrogels in addition to ionic conductivity. The effective resulting resistance of the nanostructured network is comparable to that of a gold electrode. These findings were also confirmed by cyclic voltammetry. Interestingly, heterogeneous clustering of SWNTs shows double electric mechanisms and efficiencies. GOx-SWNT doped hydrogels show a linear glucose concentration response in the range between 0.1 mM and 1.6 mM; taken together these results show high detection limits for glucose (down to 15 µM) and a sensitivity of 0.63 µA mM-1. In the perspective of monitoring cell dynamics, hydrogel functionalization allows cell adhesion and long-term cell culture, and atomic force microscopy is used for mapping the doped hydrogel stiffness. Myoblasts, cells sensitive to mechanical substrate properties, show proper differentiation of phenotype in the SWNT-HYs with nominal physiological stiffness.

13.
Biomicrofluidics ; 6(2): 24114-2411413, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22655022

ABSTRACT

Miniaturization in biological analyses has several advantages, such as sample volume reduction and fast response time. The integration of miniaturized biosensors within lab-on-a-chip setups under flow conditions is highly desirable, not only because it simplifies process handling but also because measurements become more robust and operator-independent. In this work, we study the integration of flow amperometric biosensors within a microfluidic platform when analyte concentration is indirectly measured. As a case study, we used a platinum miniaturized glucose biosensor, where glucose is enzymatically converted to [Formula: see text] that is oxidized at the electrode. The experimental results produced are strongly coupled to a theoretical analysis of fluid dynamic conditions affecting the electrochemical response of the sensor. We verified that the choice of the inlet flow rate is a critical parameter in flow biosensors, because it affects both glucose and [Formula: see text] transport, to and from the electrode. We identify optimal flow rate conditions for accurate sensing at high time resolution. A dimensionless theoretical analysis allows the extension of the results to other sensing systems according to fluid dynamic similarity principles. Furthermore, we developed a microfluidic design that connects a sampling unit to the biosensor, in order to decouple the sampling flow rate from that of the actual measurement.

SELECTION OF CITATIONS
SEARCH DETAIL
...