Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38473960

ABSTRACT

White adipose tissue (WAT) regulates energy balance through energy storage, adipokines secretion and the thermogenesis process. Beige adipocytes are responsible for WAT thermogenesis. They are generated by adipogenesis or transdifferentiation during cold or ß3-adrenergic agonist stimulus through a process called browning. Browning has gained significant interest for to its preventive effect on obesity. Glucocorticoids (GCs) have several functions in WAT biology; however, their role in beige adipocyte generation and WAT browning is not fully understood. The aim of our study was to determine the effect of dexamethasone (DXM) on WAT thermogenesis. For this purpose, rats were treated with DXM at room temperature (RT) or cold conditions to determine different thermogenic markers. Furthermore, the effects of DXM on the adipogenic potential of beige precursors and on mature beige adipocytes were evaluated in vitro. Our results showed that DXM decreased UCP-1 mRNA and protein levels, mainly after cold exposure. In vitro studies showed that DXM decreased the expression of a beige precursor marker (Ebf2), affecting their ability to differentiate into beige adipocytes, and inhibited the thermogenic response of mature beige adipocytes (Ucp-1, Dio2 and Pgc1α gene expressions and mitochondrial respiration). Overall, our data strongly suggest that DXM can inhibit the thermogenic program of both retroperitoneal and inguinal WAT depots, an effect that could be exerted, at least partially, by inhibiting de novo cell generation and the thermogenic response in beige adipocytes.


Subject(s)
Adipose Tissue, Brown , Adipose Tissue, White , Rats , Animals , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Obesity/metabolism , Adipogenesis , Dexamethasone/pharmacology , Thermogenesis
2.
Mol Cell Endocrinol ; 543: 111542, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34995681

ABSTRACT

White adipose tissue (WAT) browning has gained interest due to its impact in obesity. Here, we evaluated the effect of androgens on the Ucp1-dependent thermogenic process from inguinal (IAT) and retroperitoneal (RPAT) WAT. Surgically androgens depleted rats (ODX) showed basal thermogenic activation (room temperature) in both WAT depots, which expressed higher levels of Ucp1, Prdm16 and Pgc1a. WAT pads from ODX cold-exposed rats (ODX-C) expressed increased levels of Ucp1 and Pgc1a and showed high UCP1 protein content. In primary beige adipocyte cultures, testosterone decreased the mitochondrial marker Cox8b and mitochondrial content. Finally, testosterone and dihydrotestosterone (DHT) decreased the expression of Ucp1, Pcg1a and Prdm16 in forskolin-stimulated beige adipocytes, an effect that was prevented by the antiandrogen flutamide. In conclusion, androgen deficient rats developed WAT depots with enhanced basal and cold-stimulated thermogenic activity. Additionally, in vitro androgen treatments inhibited the thermogenic program, effect which was mediated by the androgen receptor pathway.


Subject(s)
Adipocytes, Beige , Androgens , Adipocytes, Beige/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Androgens/metabolism , Androgens/pharmacology , Animals , Cold Temperature , Rats , Thermogenesis/physiology , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism
3.
Life Sci ; 261: 118363, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32861797

ABSTRACT

AIM: Dexamethasone (DXM) is a synthetic glucocorticoid whose effects in early and terminal adipogenesis have been addressed. In this study, we evaluated if DXM affects adipocyte precursor cells (APCs), priming them for further adipogenic differentiation. For this purpose, we analyzed APCs number and competency after DXM treatment. MATERIALS AND METHODS: Adult male rats were injected for 2 or 7 days with either DXM (30 µg/kg of weight, sc.) or vehicle. Stromal vascular fraction (SVF) cells from retroperitoneal adipose tissue (RPAT) were isolated to quantify APCs by flow cytometry (CD34+/CD45-/CD31-). Also, expression of competency markers (PPARγ2 and Zfp423) was assessed. Additionally, SVF cells from control rats were incubated with DXM (0.25 µM) alone or combined with a mineralocorticoid receptor (MR) antagonist (Spironolactone 10 µM) and/or a glucocorticoid receptor (GR) antagonist (RU486 1 µM) to assess APCs competency and adipocyte differentiation. KEY FINDINGS: APCs from 2 days DXM-treated rats showed increased expression of PPARγ2 and Zfp423 (competency markers), but did not affect APCs percentage by FACS analysis (CD34+/CD45-/CD31-). Additionally, we found that DXM treatment in SVF also increased APCs competency in vitro, predisposing APCs to further adipocyte differentiation. These effects on APCs were abrogated only when both, MR and GR, were blocked. SIGNIFICANCE: Overall, our results suggest that DXM primes APCs for differentiation mainly by enhancing Zfp423 and PPARγ2 expressions. Also, we showed that the inhibition of MR and GR was necessary for the complete abolishment of DXM effects.


Subject(s)
Adipocytes/cytology , Adipogenesis , Dexamethasone/pharmacology , Stem Cells/cytology , Adipocytes/drug effects , Adipocytes/metabolism , Adipogenesis/drug effects , Adipogenesis/genetics , Adipose Tissue/cytology , Animals , Biomarkers/metabolism , Gene Expression Regulation/drug effects , Male , Mice , PPAR gamma/genetics , PPAR gamma/metabolism , Rats, Sprague-Dawley , Receptors, Glucocorticoid/metabolism , Receptors, Mineralocorticoid/metabolism , Retroperitoneal Space , Stem Cells/drug effects , Stem Cells/metabolism , Transcription Factors/metabolism
4.
Article in English | MEDLINE | ID: mdl-32201217

ABSTRACT

Spexin (SPX) is a novel adipokine related to many metabolic effects, such as gastrointestinal movements, insulin and glucose homeostasis, lipid metabolism and energy balance. This study evaluates the role of SPX in the improvement of the metabolic and inflammatory profile in fructose-rich-diet obese mice. Adult Swiss mice were supplemented or not with fructose (20% in tap water, FRD and CTR, respectively) for 10 weeks. The last ten days, mice were treated or not with SPX (ip. 29 µg/Kg/day, FRD-SPX and CTR-SPX, respectively). A positive correlation was observed between body weight prior to treatment and weight loss after SPX challenge. Moreover, plasma and liver triglycerides and adipose tissue (AT) features (mass, adipocyte hypertrophy, mRNA of leptin) were improved. SPX also induced a reduction in epididymal AT (EAT) expression of TNFα, IL1ß and IL6 and an improvement in IL10 and CD206. M1 macrophages in EAT, principally the Ly6C- populations (M1a and M1b), were decreased. Adipocytes from FRD-SPX mice induced less macrophage activation (IL6, mRNA and secretion) than FRD after overnight co-culture with the monocyte cell line (RAW264.7) in stimulated conditions (M1 activation, LPS 100 ng/mL). Finally, in vitro, monocytes pre-incubated with SPX and stimulated with LPS showed decreased inflammatory mRNA markers compared to monocytes with LPS alone. In conclusion, SPX decreased body weight and improved the metabolic profile and adipocyte hypertrophy. Inflammatory Ly6C- macrophages decreased, together with inflammatory marker expression. In vitro studies demonstrate that SPX induced a decrease in M1 macrophage polarization directly or through mature adipocytes.


Subject(s)
Adipose Tissue/drug effects , Anti-Inflammatory Agents/pharmacology , Macrophage Activation , Macrophages/drug effects , Obesity/drug therapy , Peptide Hormones/pharmacology , Animals , Anti-Inflammatory Agents/therapeutic use , Cells, Cultured , Interleukins/genetics , Interleukins/metabolism , Macrophages/immunology , Male , Mice , Peptide Hormones/therapeutic use , RAW 264.7 Cells , Triglycerides/blood , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...