Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Phys Rev Lett ; 130(19): 190602, 2023 May 12.
Article in English | MEDLINE | ID: mdl-37243658

ABSTRACT

Algorithms for associative memory typically rely on a network of many connected units. The prototypical example is the Hopfield model, whose generalizations to the quantum realm are mainly based on open quantum Ising models. We propose a realization of associative memory with a single driven-dissipative quantum oscillator exploiting its infinite degrees of freedom in phase space. The model can improve the storage capacity of discrete neuron-based systems in a large regime and we prove successful state discrimination between n coherent states, which represent the stored patterns of the system. These can be tuned continuously by modifying the driving strength, constituting a modified learning rule. We show that the associative-memory capability is inherently related to the existence of a spectral separation in the Liouvillian superoperator, which results in a long timescale separation in the dynamics corresponding to a metastable phase.

2.
Phys Rev Lett ; 127(10): 100502, 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34533342

ABSTRACT

Closed quantum systems exhibit different dynamical regimes, like many-body localization or thermalization, which determine the mechanisms of spread and processing of information. Here we address the impact of these dynamical phases in quantum reservoir computing, an unconventional computing paradigm recently extended into the quantum regime that exploits dynamical systems to solve nonlinear and temporal tasks. We establish that the thermal phase is naturally adapted to the requirements of quantum reservoir computing and report an increased performance at the thermalization transition for the studied tasks. Uncovering the underlying physical mechanisms behind optimal information processing capabilities of spin networks is essential for future experimental implementations and provides a new perspective on dynamical phases.

3.
Sci Rep ; 11(1): 12834, 2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34145329

ABSTRACT

It has long been recognized that emission of radiation from atoms is not an intrinsic property of individual atoms themselves, but it is largely affected by the characteristics of the photonic environment and by the collective interaction among the atoms. A general belief is that preventing full decay and/or decoherence requires the existence of dark states, i.e., dressed light-atom states that do not decay despite the dissipative environment. Here, we show that, contrary to such a common wisdom, decoherence suppression can be intermittently achieved on a limited time scale, without the need for any dark state, when the atom is coupled to a chiral ring environment, leading to a highly non-exponential staircase decay. This effect, that we refer to as intermittent decoherence blockade, arises from periodic destructive interference between light emitted in the present and light emitted in the past, i.e., from delayed coherent quantum feedback.

4.
Phys Rev Lett ; 126(13): 130403, 2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33861108

ABSTRACT

We introduce the multipartite collision model, defined in terms of elementary interactions between subsystems and ancillas, and show that it can simulate the Markovian dynamics of any multipartite open quantum system. We develop a method to estimate an analytical error bound for any repeated interactions model, and we use it to prove that the error of our scheme displays an optimal scaling. Finally, we provide a simple decomposition of the multipartite collision model into elementary quantum gates, and show that it is efficiently simulable on a quantum computer according to the dissipative quantum Church-Turing theorem, i.e., it requires a polynomial number of resources.

5.
Phys Rev Lett ; 123(2): 023604, 2019 Jul 12.
Article in English | MEDLINE | ID: mdl-31386511

ABSTRACT

Synchronization phenomena have been recently reported in the quantum realm at the atomic level due to collective dissipation. In this work we propose a dimer lattice of trapped atoms realizing a dissipative spin model where quantum synchronization occurs instead in the presence of local dissipation. Atom synchronization is enabled by the inhomogeneity of staggered local losses in the lattice and is favored by an increase of spins detuning. A comprehensive approach to quantum synchronization based on different measures considered in the literature allows us to identify the main features of different synchronization regimes.

6.
Sci Rep ; 3: 1439, 2013.
Article in English | MEDLINE | ID: mdl-23486526

ABSTRACT

Synchronization is one of the paradigmatic phenomena in the study of complex systems. It has been explored theoretically and experimentally mostly to understand natural phenomena, but also in view of technological applications. Although several mechanisms and conditions for synchronous behavior in spatially extended systems and networks have been identified, the emergence of this phenomenon has been largely unexplored in quantum systems until very recently. Here we discuss synchronization in quantum networks of different harmonic oscillators relaxing towards a stationary state, being essential the form of dissipation. By local tuning of one of the oscillators, we establish the conditions for synchronous dynamics, in the whole network or in a motif. Beyond the classical regime we show that synchronization between (even unlinked) nodes witnesses the presence of quantum correlations and entanglement. Furthermore, synchronization and entanglement can be induced between two different oscillators if properly linked to a random network.

7.
Phys Rev Lett ; 107(19): 190501, 2011 Nov 04.
Article in English | MEDLINE | ID: mdl-22181588

ABSTRACT

Generalizing the quantifiers used to classify correlations in bipartite systems, we define genuine total, quantum, and classical correlations in multipartite systems. The measure we give is based on the use of relative entropy to quantify the distance between two density matrices. Moreover, we show that, for pure states of three qubits, both quantum and classical bipartite correlations obey a ladder ordering law fixed by two-body mutual informations, or, equivalently, by one-qubit entropies.

SELECTION OF CITATIONS
SEARCH DETAIL
...