Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 37(31): 10956-60, 1998 Aug 04.
Article in English | MEDLINE | ID: mdl-9692988

ABSTRACT

We studied the effects of the addition of a series of 1, 2-dioctadecenoyl-sn-glycerol-3-phosphoethanolamines to vesicles composed of 1-palmitoyl-2-oleoylphosphatidylserine and 1-palmitoyl-2-oleoylphosphatidylcholine on the activity and membrane binding of protein kinase C (PKC). The three phosphatidylethanolamines (PEs) were dipetroselinoyl-PE, dioleoyl-PE, and divaccenoyl-PE, which have double bonds in positions 6, 9, and 11, respectively. These lipids represent a group of structurally homologous compounds whose physical properties have been compared. We also used a fluorescent probe, 4-[(n-dodecylthio)methyl]-7-(N, N-dimethylamino)coumarin to measure the relative interfacial polarities of LUVs containing each of the three PEs. We find dipetroselinoyl-PE allows the least access of the fluorescent probe to the membrane. This is also the lipid that shows the lowest activation of PKC. The activity of PKC was found to correlate best with the interfacial properties of the three PEs rather than with the curvature energy of the membrane. The results show the sensitivity of the activity of PKC to small changes in lipid structure.


Subject(s)
Fatty Acids, Unsaturated/chemistry , Membrane Lipids/chemistry , Protein Kinase C/metabolism , Animals , Binding Sites , Coumarins/chemistry , Enzyme Activation/drug effects , Fluorescence Polarization , Fluorescent Dyes , Membrane Proteins/metabolism , Phosphatidylcholines/chemistry , Phosphatidylethanolamines/chemistry , Phosphatidylserines/chemistry , Phospholipids/chemistry , Rats , Spectrometry, Fluorescence , Surface Properties
2.
Biochemistry ; 37(8): 2384-92, 1998 Feb 24.
Article in English | MEDLINE | ID: mdl-9485386

ABSTRACT

Protein kinase C (PKC) activation is measured using liposomes containing phosphatidylserine. Certain lipids display a wide range of polymorphism, depending on conditions. They can give rise to nonlamellar phases, such as hexagonal or cubic phases, as well as to lamellar phases. In this paper, we studied the activity and membrane binding of PKC in lipid bicontinuous cubic phases and hexagonal phases. The cubic phase lipid systems were (1) monoolein with 1-palmitoyl-2-oleoyl-3-phosphatidylserine (MO/PS) and (2) dielaidoylphosphatidylethanolamine/alamethicin (DEPE/alamethicin). Under fully hydrated conditions, both of the above lipid mixtures are bicontinuous cubic phases with a space group of Pn3m within certain concentration ratios and temperature ranges. Dioleoylphosphatidylethanolamine (DOPE) with up to 10 mol % PS exists in the hexagonal phase at room temperature. These cubic and hexagonal phases were able to support the PKC-catalyzed phosphorylation of histone. The amount of PKC bound to the MO/PS cubic phase showed little increase between 5 and 10 mol % PS. For both of the cubic phase systems studied, only a minor fraction of the PKC was bound to the membrane. This indicates that the specific activity of the enzyme bound to cubic phase membranes is much greater than that bound to phospholipid in the lamellar phase. Addition of up to 50 mol % MO to lipid in the lamellar phase had relatively small effects on the activity of PKC. The increase in PKC activity correlated well with an increase in PKC binding, resulting in little change in the specific activity of the membrane-bound form. These findings may be physiologically relevant due to the apparent presence of the cubic phase in certain biological structures. Also, these phases have little or no curvature strain, a property which has been shown to correlate with activation of PKC. Therefore, other factors, such as a curved morphology and/or interfacial polarity, must be responsible for the activation of PKC in these lipid systems.


Subject(s)
Lipids/chemistry , Liposomes/chemistry , Protein Kinase C/metabolism , Alamethicin/chemistry , Animals , Chemical Phenomena , Chemistry, Physical , Enzyme Activation , Glycerides/chemistry , Histones/chemistry , Histones/metabolism , In Vitro Techniques , Magnetic Resonance Spectroscopy , Phosphorylation , Rats
3.
Biochemistry ; 36(8): 2250-6, 1997 Feb 25.
Article in English | MEDLINE | ID: mdl-9047327

ABSTRACT

The role of hydration in the catalytic activity and membrane binding of rat brain protein kinase C (PKC) was investigated by modulating the activity of water with polyethylene glycols with molecular weights of 1000-20000 and dextran with a molecular weight of 20000. These polymers create an osmotic stress due to their exclusion from hydration shells and crevices on proteins, causing dehydration. Polymers larger than 1000 caused an activation of the PKC-catalyzed phosphorylation of histone, while PEG 1000 had no significant effect. The extent of activation by PEG and dextran 20000 was larger than that of PEG 6000 or 8000 when vesicles were composed of 1:1 POPS/POPC, suggesting the presence of at least two distinct regions of exclusion on PKC: one inaccessible to PEGs larger than 1000 and the other inaccessible only to PEGs of > 10000. The extent of activation was dependent on the composition of the vesicles used. If basal activity (without PEG) was low (e.g. with low PS content in membranes), then the extent of activation was similar for all polymers larger than 1000. Binding of PKC to membranes containing 50 mol % PS was unaffected by PEG 6000 but was inhibited by PEG 20000. At a low PS content of 10%, both PEG 6000 and 20000 inhibited binding. This suggests that PKC becomes hydrated upon binding to membranes. Under conditions in which all of the enzyme is membrane-bound, both Km and Vmax for the phosphorylation of histone increased linearly with osmotic stress induced by PEG 6000. Thus, PKC becomes hydrated with 2311 +/- 476 water molecules upon binding of histone and is dehydrated by 1349 +/- 882 water molecules in going to the transition state. Km and Vmax for phosphorylation of the MARCKS peptide also increase with osmotic stress induced by PEG 6000. When protamine sulfate was used as a substrate (cofactor-independent), Vmax for the reaction was unaffected, but Km decreased with osmotic pressure (with PEG 6000), suggesting that PKC becomes dehydrated upon binding protamine. Similar results were found with a peptide substrate derived from the pseudosubstrate site of PKC epsilon. Since dextran, a polymer unrelated in structure to PEG, could cause a similar activation of PKC, the effects seen are likely due to osmotic stress and not to specific binding of PEG to PKC. Also, results obtained with PE-linked PEG were opposite to those with free PEG. PE-linked PEGs of 2000 and 5000 caused an inhibition of PKC-catalyzed phosphorylation of histone when present in membranes. If a specific interaction occurred with PEG, this would be expected to occur even with PE-PEG. The effects observed with free PEG are also independent of ionic strength. Free PEG had no effect on the bilayer to hexagonal phase transition temperature of DEPE membranes, suggesting that the effects on PKC activity are not a consequence of changes in membrane properties at the osmotic pressures used.


Subject(s)
Lipid Bilayers/metabolism , Protein Kinase C/metabolism , Water/metabolism , Amino Acid Sequence , Animals , Cross-Linking Reagents , Dextrans , Molecular Sequence Data , Osmolar Concentration , Polyethylene Glycols , Rats
4.
Proc Natl Acad Sci U S A ; 93(21): 11634-9, 1996 Oct 15.
Article in English | MEDLINE | ID: mdl-8876188

ABSTRACT

Lipophosphoglycan (LPG), the predominant molecule on the surface of the parasite Leishmania donovani, has previously been shown to be a potent inhibitor of protein kinase C (PKC) isolated from rat brain. The mechanism by which LPG inhibits PKC was further investigated in this study. LPG was found to inhibit the PKC alpha-catalyzed phosphorylation of histone in assays using large unilamellar vesicles composed of 1-palmitoyl, 2-oleoyl phosphatidylserine and 1-palmitoyl, 2-oleoyl phosphatidylcholine either with or without 1% 1,2 diolein added. The results also indicated that while PKC binding to sucrose-loaded vesicles was not substantially reduced in the presence of LPG at concentrations of 1-2%, the activity of membrane-bound PKC was inhibited by 70%. This inhibition of the membrane-bound form of PKC is not a consequence of reduced substrate availability to the membrane. However, Km shifted from approximately 31 +/- 4 microM to 105 +/- 26 microM in the presence of 5% LPG. LPG caused PKC to bind to membranes without inducing a conformational change as revealed by the lack of an increased susceptibility to trypsin. An LPG fragment containing only one repeating disaccharide unit was not as effective as the entire LPG molecule or of larger fragments in inhibiting the membrane-bound form of the enzyme. The shorter fragments were also less potent in raising the bilayer to hexagonal phase transition temperature of a model membrane. LPG is also able to inhibit the membrane-bound form of PKC alpha from the inner monolayer of large unilamellar vesicles, the opposite monolayer to which the enzyme binds in our assay. Inhibition is likely a result of alterations in the physical properties of the membrane. To our knowledge, this is the first example of a membrane additive that can inhibit the membrane-bound form of PKC in the presence of other lipid cofactors.


Subject(s)
Brain/enzymology , Enzyme Inhibitors/pharmacology , Glycosphingolipids/pharmacology , Leishmania donovani , Lipid Bilayers/pharmacology , Type C Phospholipases/antagonists & inhibitors , Amino Acid Sequence , Animals , Kinetics , Molecular Sequence Data , Peptide Fragments/chemistry , Peptide Fragments/isolation & purification , Peptide Mapping , Rats , Trypsin , Type C Phospholipases/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...