Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 565: 474-482, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-31982714

ABSTRACT

HYPOTHESIS: Colloidal silica dispersions dried under controlled conditions form solid gels that display mechanical properties similar to those observed in several practical processes. An understanding of their structural characteristics and liquid flow properties can therefore help establish these gels as an alternative family of model materials to study practical porous systems. EXPERIMENTS: Neutron radiography is a non-destructive technique well-adapted to study hydrogen-rich domains in porous materials due to the high attenuation power of hydrogen. We apply this technique to study gels prepared from silica nanoparticles of radii 5-40 nm. FINDINGS: The water content in the gels have been quantified and different types of porosities have been determined: total porosity, effective porosity that contributes to liquid flow, and residual porosity that contains bound residual water. This residual water increases with decrease in particle size and constitutes an important fraction of the gel. The dynamics of water imbibition follows a √t law, from which the effective pore size and permeability are evaluated. We highlight the role of particle size on water retention, on particle organization and its impact on mechanical resistance. Quantitative analysis of the propagating liquid front shows front broadening that suggests elongated pores with reduced correlated liquid menisci.

2.
Soft Matter ; 15(10): 2277-2283, 2019 Mar 06.
Article in English | MEDLINE | ID: mdl-30768090

ABSTRACT

Solvent penetration in porous layers was analyzed using dynamical and mechanical characterization. Spreading dynamics of a solvent drop in a porous substrate provided parameters of the porous medium such as permeability and porosity. These measurements are relevant for many porous systems, for example paintings or porous varnishes and resins… We present direct visualizations of the drop as well as of the wet zone during the imbibition process and we evidence three distinct regimes. Experiments performed with various porous systems and different solvents highlight a universal behavior. The mechanical properties during the imbibition process are deduced through indentation testing measurements. We show that solvent penetration is responsible for the appearance of a viscous component in the system. A characteristic time depending on the solvent and on the porous medium is then deduced. The system recovers its initial mechanical properties and no swelling nor cracking is observed contrary to the case of paintings. This result tends to prove that visco-plastic properties are required to observe swelling or cracking.

3.
Langmuir ; 35(7): 2692-2701, 2019 Feb 19.
Article in English | MEDLINE | ID: mdl-30719921

ABSTRACT

During evaporative drying of a colloidal dispersion, the structural behavior at the air-dispersion interface is of particular relevance to the understanding of the consolidation mechanism and the final structural and mechanical properties of the porous media. The drying interface constitutes the region of initial drying stress that, when accumulated over a critical thickness, leads to crack formation. This work presents an experimental study of top-down drying of colloidal silica dispersions with three different sizes (radius 5, 8, and 13 nm). Using specular neutron reflectivity, we focus on the structural evolution at the free drying front of the dispersion with a macroscopic drying surface and demonstrate the existence of a thick concentrated surface layer induced by heterogeneous evaporation. The reflectivity profile contains a strong structure peak due to scattering from particles in the interfacial region, from which the interparticle distance is deduced. A notable advantage of these measurements is the direct extraction of the corresponding dispersion concentration from the critical total reflection edge, providing a straightforward access to a structure-concentration relation during the drying process. The bulk reservoir of this experimental configuration renders it possible to verify the evaporation-diffusion balance to construct the surface layer and also to check reversibility of particle ordering. We follow the structural evolution of this surface layer from a sol to a soft wet-gel that is the precursor of a fragile skin and the onset of significant particle aggregation that precedes formation of the wet-crust. Separate complementary measurements on the structural evolution in the bulk dispersion are also carried out by small-angle neutron scattering, where the particle concentration is also extracted directly from the experimental curves. The two sets of data reveal similar structural evolution with concentration at the interface and in the bulk and an increase in the degree of ordering with the particle size.

4.
Eur Phys J E Soft Matter ; 41(8): 94, 2018 Aug 22.
Article in English | MEDLINE | ID: mdl-30128834

ABSTRACT

The drying of complex fluids provides a powerful insight into phenomena that take place on time and length scales not normally accessible. An important feature of complex fluids, colloidal dispersions and polymer solutions is their high sensitivity to weak external actions. Thus, the drying of complex fluids involves a large number of physical and chemical processes. The scope of this review is the capacity to tune such systems to reproduce and explore specific properties in a physics laboratory. A wide variety of systems are presented, ranging from functional coatings, food science, cosmetology, medical diagnostics and forensics to geophysics and art.

5.
Soft Matter ; 13(34): 5802-5808, 2017 Aug 30.
Article in English | MEDLINE | ID: mdl-28828434

ABSTRACT

Shrinkage cracks are observed in many materials, particularly in paintings where great interest lies in deducing quantitative information on the material with the aim of proposing authentication methods. We present experimental measurements on the crack opening induced by the drying of colloidal layers and compare these results to the case of a pictorial layer. We propose a simple model to predict the crack width as a function of the thickness of the drying layer, based on the balance between the drying stress buildup and the shear frictional stress with the substrate. Key parameters of the model include the mechanical properties that are measured experimentally using micro-indentation testing. A good agreement between theory and experimental data for both colloidal layers and the real painting is found. These results, by comparing the shrinkage cracks in model layers and in pictorial layers, validate the method based on the use of colloidal systems to simulate and to reproduce drying cracks in paintings.

6.
Phys Rev Lett ; 90(14): 144301, 2003 Apr 11.
Article in English | MEDLINE | ID: mdl-12731917

ABSTRACT

Apparent mass (M(app)) measurements at the bottom of granular packings inside a vertical tube in relative motion are reported. They demonstrate that Janssen's model is valid over a broad range of velocities v. The variability of the measurements is lower than for static packings and the theoretical exponential increase of M(app) with the height of the packing is precisely followed (the corresponding characteristic screening length is of the order of the tube diameter). The limiting apparent mass at large heights is independent of v and significantly lower than the static value.

SELECTION OF CITATIONS
SEARCH DETAIL
...