Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Prog ; 32(6): 1559-1569, 2016 11.
Article in English | MEDLINE | ID: mdl-27568921

ABSTRACT

The infectivity of stocks of baculoviruses produced in serum-free media is sensitive to freezing at ultra-low temperatures. The objective of this work was to elucidate the causes of such sensitivity, using as a model the freezing of stocks of Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV), a baculovirus widely employed as biological insecticide. Titers of supernatants of cell cultures infected with AgMNPV in four different serum-free media supplemented with lipid emulsions were reduced by 50 to 90% after six months freezing. By using a full factorial experiment, freezing and lipid emulsion, as well as the interaction between them, were identified as the main factors reducing the viral titer. The virucidal effect of the lipid emulsion was reproduced by one of their components, the surfactant Polysorbate 80. Damaged viral envelopes were observed by transmission electron microscopy in most particles frozen in a medium supplemented with lipid emulsion or Polysorbate 80. Additionally, Polysorbate 80 also affected the infectivity of AgMNPV stocks that were incubated at 27°C. The identification of the roles played by the lipid emulsion and Polysorbate 80 is not only a contribution to the understanding of the mechanisms underlying the inactivation of baculovirus stocks produced in serum-free media during storage at ultra-low temperature, but is also an input for the rational development of new procedures aimed at improving both the preservation of baculovirus stocks and the composition of culture media for the production of baculovirus-based bioproducts in insect cells. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1559-1569, 2016.


Subject(s)
Culture Media, Serum-Free/chemistry , Lipids/biosynthesis , Nucleopolyhedroviruses/drug effects , Temperature , Animals , Cells, Cultured , Emulsions/chemistry , Emulsions/metabolism , Insecta , Lipids/chemistry , Nucleopolyhedroviruses/metabolism , Polysorbates/pharmacology
2.
Cytotechnology ; 52(2): 113-24, 2006 Oct.
Article in English | MEDLINE | ID: mdl-19002870

ABSTRACT

The UFL-AG-286 cell line, established from embryonic tissue of the lepidopteran insect Anticarsia gemmatalis, has been identified as a good candidate to be used as a cellular substrate in the development of a process for in vitro production of the Anticarsia gemmatalis multicapsid nucleopolyhedrovirus, a baculovirus widely used as bioinsecticide. In order to characterize the technological properties of this cell line and evaluate its feasibility to use it for the large-scale production of Anticarsia gemmatalis multicapsid nucleopolyhedrovirus, UFL-AG-286 cells were adapted to grow as agitated suspension cultures in spinner-flasks. Batch suspension cultures of adapted cells in serum-supplemented TC-100 medium grew with a doubling time of about 29 h and reached a maximum cell density higher than 3.5 x 10(6) viable cells ml(-1). At the end of the growth period glucose was completely depleted from the culture medium, but L: -lactate was not produced. Amino acids, with the exception of glutamine, were only negligibly consumed or produced. In contrast to other insect cell lines, UFL-AG-286 cells appeared to be unable to synthesize alanine as a metabolic way to dispose the by-product ammonia. The synchronous infection of suspension cultures with Anticarsia gemmatalis multicapsid nucleopolyhedrovirus in the early to medium exponential growth phase yielded high amounts of both viral progenies per cell and reduced the specific demands of UFL-AG-286 cells for the main nutrients.

SELECTION OF CITATIONS
SEARCH DETAIL
...