Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38980789

ABSTRACT

Transfemoral amputation is a debilitating condition that leads to long-term mobility restriction and secondary disorders that negatively affect the quality of life of millions of individuals worldwide. Currently available prostheses are not able to restore energetically efficient and functional gait, thus, recently, the alternative strategy to inject energy at the residual hip has been proposed to compensate for the lack of energy of the missing leg. Here, we show that a portable and powered hip exoskeleton assisting both the residual and intact limb induced a reduction of walking energy expenditure in four individuals with above-knee amputation. The reduction of the energy expenditure, quantified using the Physiological Cost Index, was in the range [-10, -17]% for all study participants compared to walking without assistance, and between [-2, -24]% in three out of four study participants compared to walking without the device. Additionally, all study participants were able to walk comfortably and confidently with the hip exoskeleton overground at both their self-selected comfortable and fast speed without any observable alterations in gait stability. The study findings confirm that injecting energy at the hip level is a promising approach for individuals with above-knee amputation. By reducing the energy expenditure of walking and facilitating gait, a hip exoskeleton may extend mobility and improve locomotor training of individuals with above-knee amputation, with several positive implications for their quality of life.


Subject(s)
Amputation, Surgical , Amputees , Artificial Limbs , Energy Metabolism , Exoskeleton Device , Hip , Walking , Humans , Walking/physiology , Male , Adult , Amputation, Surgical/rehabilitation , Amputees/rehabilitation , Middle Aged , Gait/physiology , Female , Biomechanical Phenomena , Prosthesis Design , Knee
2.
Article in English | MEDLINE | ID: mdl-22255618

ABSTRACT

In this work, we present the development of an in-shoe device to monitor plantar pressure distribution for gait analysis. The device consists in a matrix of 64 sensitive elements, integrated with in-shoe electronics and battery which provide an high-frequency data acquisition, wireless transmission and an average autonomy of 7 hours in continuous working mode. The device is presented along with its experimental characterization and a preliminary validation on a healthy subject.


Subject(s)
Actigraphy/instrumentation , Gait/physiology , Monitoring, Ambulatory/instrumentation , Physical Examination/instrumentation , Shoes , Telemetry/instrumentation , Transducers, Pressure , Walking/physiology , Equipment Design , Equipment Failure Analysis , Humans
3.
Article in English | MEDLINE | ID: mdl-21095918

ABSTRACT

A new and alternative method to measure the interaction force between the user and a lower-limb gait rehabilitation exoskeleton is presented. Instead of using a load cell to measure the resulting interaction force, we propose a distributed measure of the normal interaction pressure over the whole contact area between the user and the machine. To obtain this measurement, a soft silicone tactile sensor is inserted between the limb and commonly used connection cuffs. The advantage of this approach is that it allows for a distributed measure of the interaction pressure, which could be useful for rehabilitation therapy assessment purposes, or for control. Moreover, the proposed solution does not change the comfort of the interaction; can be applied to connection cuffs of different shapes and sizes; and can be manufactured at a low cost. Preliminary results during gait assistance tasks show that this approach can precisely detect changes in the pressure distribution during a gait cycle.


Subject(s)
Gait Disorders, Neurologic/rehabilitation , Man-Machine Systems , Monitoring, Ambulatory/instrumentation , Motion Therapy, Continuous Passive/instrumentation , Robotics/instrumentation , Therapy, Computer-Assisted/instrumentation , Transducers , Elastic Modulus , Equipment Design , Equipment Failure Analysis , Humans , Leg , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...