Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 13: 834711, 2022.
Article in English | MEDLINE | ID: mdl-35359919

ABSTRACT

Staphylococcal protein A (SpA) is a multifunctional, highly conserved virulence factor of Staphylococcus aureus. By binding the Fc portion of all human IgG subclasses apart from IgG3, SpA interferes with antibody and complement deposition on the bacterial surface, impairing staphylococcal clearance by phagocytosis. Because of its anti-opsonic properties, SpA is not investigated as a surface antigen to mediate bacterial phagocytosis. Herein we investigate human sera for the presence of SpA-opsonizing antibodies. The screening revealed that sera containing IgG3 against SpA were able to correctly opsonize the target and drive Fcγ receptor-mediated interactions and phagocytosis. We demonstrated that IgG3 Fc is significantly more efficient in inducing phagocytosis of SpA-expressing S. aureus as compared to IgG1 Fc in an assay resembling physiological conditions. Furthermore, we show that the capacity of SpA antibodies to induce phagocytosis depends on the specific epitope recognized by the IgGs on SpA molecules. Overall, our results suggest that anti-SpA IgG3 antibodies could favor the anti-staphylococcal response in humans, paving the way towards the identification of a correlate of protection against staphylococcal infections.


Subject(s)
Staphylococcal Infections , Staphylococcal Protein A , Humans , Immunoglobulin G , Opsonin Proteins , Phagocytosis , Staphylococcus , Staphylococcus aureus
2.
Front Immunol ; 12: 749432, 2021.
Article in English | MEDLINE | ID: mdl-34819932

ABSTRACT

Staphylococcus aureus is a common human commensal and the leading cause of diverse infections. To identify distinctive parameters associated with infection and colonization, we compared the immune and inflammatory responses of patients with a diagnosis of invasive S. aureus disease to healthy donors. We analyzed the inflammatory responses founding a pattern of distinctive cytokines significantly higher in the patients with invasive disease. The measure of antibody levels revealed a wide antibody responsiveness from all subjects to most of the antigens, with significantly higher response for some antigens in the invasive patients compared to control. Moreover, functional antibodies against toxins distinctively associated with the invasive disease. Finally, we examined the genomic variability of isolates, showing no major differences in genetic distribution compared to a panel of representative strains. Overall, our study shows specific signatures of cytokines and functional antibodies in patients with different primary invasive diseases caused by S. aureus. These data provide insight into human responses towards invasive staphylococcal infections and are important for guiding the identification of novel preventive and therapeutic interventions against S. aureus.


Subject(s)
Staphylococcal Infections/immunology , Adult , Antibodies, Bacterial/blood , Antigens, Bacterial/immunology , Child , Cytokines/blood , Humans , Immunoglobulin G/blood , Protein Array Analysis , Staphylococcal Infections/blood , Staphylococcal Infections/genetics , Staphylococcus aureus/immunology , Virulence Factors/immunology
3.
Vaccine ; 35(2): 361-368, 2017 01 05.
Article in English | MEDLINE | ID: mdl-27939014

ABSTRACT

Nucleic acid vaccines represent an attractive approach to vaccination, combining the positive attributes of both viral vectors and live-attenuated vaccines, without the inherent limitations of each technology. We have developed a novel technology, the Self-Amplifying mRNA (SAM) platform, which is based on the synthesis of self-amplifying mRNA formulated and delivered as a vaccine. SAM vaccines have been shown to stimulate robust innate and adaptive immune responses in small animals and non-human primates against a variety of viral antigens, thus representing a safe and versatile tool against viral infections. To assess whether the SAM technology could be used for a broader range of targets, we investigated the immunogenicity and efficacy of SAM vaccines expressing antigens from Group A (GAS) and Group B (GBS) Streptococci, as models of bacterial pathogens. Two prototype bacterial antigens (the double-mutated GAS Streptolysin-O (SLOdm) and the GBS pilus 2a backbone protein (BP-2a)) were successfully expressed by SAM vectors. Mice immunized with both vaccines produced significant amounts of fully functional serum antibodies. The antibody responses generated by SAM vaccines were capable of conferring consistent protection in murine models of GAS and GBS infections. Inclusion of a eukaryotic secretion signal or boosting with the recombinant protein resulted in higher specific-antibody levels and protection. Our results support the concept of using SAM vaccines as potential solution for a wide range of both viral and bacterial pathogens, due to the versatility of the manufacturing processes and the broad spectrum of elicited protective immune response.


Subject(s)
Antigens, Bacterial/immunology , RNA, Messenger/biosynthesis , Streptococcal Infections/prevention & control , Streptococcal Vaccines/immunology , Streptococcus agalactiae/immunology , Streptococcus pyogenes/immunology , Animals , Antibodies, Bacterial/blood , Antigens, Bacterial/biosynthesis , Antigens, Bacterial/genetics , Disease Models, Animal , Female , Mice , RNA, Messenger/genetics , Streptococcal Vaccines/administration & dosage , Streptococcal Vaccines/genetics , Streptococcus agalactiae/genetics , Streptococcus pyogenes/genetics
4.
PLoS One ; 11(8): e0161193, 2016.
Article in English | MEDLINE | ID: mdl-27525409

ABSTRACT

Current hemagglutinin (HA)-based seasonal influenza vaccines induce vaccine strain-specific neutralizing antibodies that usually fail to provide protection against mismatched circulating viruses. Inclusion in the vaccine of highly conserved internal proteins such as the nucleoprotein (NP) and the matrix protein 1 (M1) was shown previously to increase vaccine efficacy by eliciting cross-reactive T-cells. However, appropriate delivery systems are required for efficient priming of T-cell responses. In this study, we demonstrated that administration of novel self-amplifying mRNA (SAM®) vectors expressing influenza NP (SAM(NP)), M1 (SAM(M1)), and NP and M1 (SAM(M1-NP)) delivered with lipid nanoparticles (LNP) induced robust polyfunctional CD4 T helper 1 cells, while NP-containing SAM also induced cytotoxic CD8 T cells. Robust expansions of central memory (TCM) and effector memory (TEM) CD4 and CD8 T cells were also measured. An enhanced recruitment of NP-specific cytotoxic CD8 T cells was observed in the lungs of SAM(NP)-immunized mice after influenza infection that paralleled with reduced lung viral titers and pathology, and increased survival after homologous and heterosubtypic influenza challenge. Finally, we demonstrated for the first time that the co-administration of RNA (SAM(M1-NP)) and protein (monovalent inactivated influenza vaccine (MIIV)) was feasible, induced simultaneously NP-, M1- and HA-specific T cells and HA-specific neutralizing antibodies, and enhanced MIIV efficacy against a heterologous challenge. In conclusion, systemic administration of SAM vectors expressing conserved internal influenza antigens induced protective immune responses in mice, supporting the SAM® platform as another promising strategy for the development of broad-spectrum universal influenza vaccines.


Subject(s)
Antigens, Viral/genetics , Antigens, Viral/immunology , Conserved Sequence , Influenza A virus/immunology , Influenza A virus/physiology , Influenza Vaccines/genetics , Influenza Vaccines/immunology , Animals , Cell Line , Cricetinae , Gene Amplification , Gene Expression , Genetic Vectors/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/physiology , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H3N2 Subtype/physiology , Lung/immunology , Mice , RNA, Messenger/genetics , T-Lymphocytes, Cytotoxic/immunology , Vaccines, Inactivated/genetics , Vaccines, Inactivated/immunology , Viral Core Proteins/genetics , Viral Core Proteins/immunology , Viral Matrix Proteins/genetics , Viral Matrix Proteins/immunology
5.
J Virol ; 90(1): 332-44, 2016 01 01.
Article in English | MEDLINE | ID: mdl-26468547

ABSTRACT

UNLABELLED: Seasonal influenza is a vaccine-preventable disease that remains a major health problem worldwide, especially in immunocompromised populations. The impact of influenza disease is even greater when strains drift, and influenza pandemics can result when animal-derived influenza virus strains combine with seasonal strains. In this study, we used the SAM technology and characterized the immunogenicity and efficacy of a self-amplifying mRNA expressing influenza virus hemagglutinin (HA) antigen [SAM(HA)] formulated with a novel oil-in-water cationic nanoemulsion. We demonstrated that SAM(HA) was immunogenic in ferrets and facilitated containment of viral replication in the upper respiratory tract of influenza virus-infected animals. In mice, SAM(HA) induced potent functional neutralizing antibody and cellular immune responses, characterized by HA-specific CD4 T helper 1 and CD8 cytotoxic T cells. Furthermore, mice immunized with SAM(HA) derived from the influenza A virus A/California/7/2009 (H1N1) strain (Cal) were protected from a lethal challenge with the heterologous mouse-adapted A/PR/8/1934 (H1N1) virus strain (PR8). Sera derived from SAM(H1-Cal)-immunized animals were not cross-reactive with the PR8 virus, whereas cross-reactivity was observed for HA-specific CD4 and CD8 T cells. Finally, depletion of T cells demonstrated that T-cell responses were essential in mediating heterologous protection. If the SAM vaccine platform proves safe, well tolerated, and effective in humans, the fully synthetic SAM vaccine technology could provide a rapid response platform to control pandemic influenza. IMPORTANCE: In this study, we describe protective immune responses in mice and ferrets after vaccination with a novel HA-based influenza vaccine. This novel type of vaccine elicits both humoral and cellular immune responses. Although vaccine-specific antibodies are the key players in mediating protection from homologous influenza virus infections, vaccine-specific T cells contribute to the control of heterologous infections. The rapid production capacity and the synthetic origin of the vaccine antigen make the SAM platform particularly exploitable in case of influenza pandemic.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/prevention & control , RNA, Messenger/genetics , RNA, Messenger/metabolism , Vaccines, DNA/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cross Protection , Disease Models, Animal , Female , Ferrets , Influenza Vaccines/administration & dosage , Influenza Vaccines/genetics , Leukocyte Reduction Procedures , Mice, Inbred BALB C , Orthomyxoviridae Infections/immunology , Respiratory System/virology , Survival Analysis , Treatment Outcome , Vaccines, DNA/administration & dosage , Vaccines, DNA/genetics , Viral Load
6.
Immunology ; 146(2): 312-26, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26173587

ABSTRACT

Self-amplifying mRNAs (SAM(®) ) are a novel class of nucleic acid vaccines, delivered by a non-viral delivery system. They are effective at eliciting potent and protective immune responses and are being developed as a platform technology with potential to be used for a broad range of targets. However, their mechanism of action has not been fully elucidated. To date, no evidence of in vivo transduction of professional antigen-presenting cells (APCs) by SAM vector has been reported, while the antigen expression has been shown to occur mostly in the muscle fibres. Here we show that bone-marrow-derived APCs rather than muscle cells are responsible for induction of MHC class-I restricted CD8 T cells in vivo, but direct transfection of APCs by SAM vectors is not required. Based on all our in vivo and in vitro data we propose that upon SAM vaccination the antigen is expressed within muscle cells and then transferred to APCs, suggesting cross-priming as the prevalent mechanism for priming the CD8 T-cell response by SAM vaccines.


Subject(s)
Antigen-Presenting Cells/immunology , Bone Marrow Cells/immunology , CD8-Positive T-Lymphocytes/immunology , Cross-Priming , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/immunology , Muscle Fibers, Skeletal/immunology , RNA, Messenger/immunology , RNA, Viral/immunology , RNA-Binding Proteins/immunology , Viral Core Proteins/immunology , Animals , Antigen-Presenting Cells/virology , Bone Marrow Cells/virology , Bone Marrow Transplantation , CD8-Positive T-Lymphocytes/virology , Cell Communication , Cell Line , Cricetinae , Female , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Influenza A Virus, H1N1 Subtype/genetics , Influenza Vaccines/genetics , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Transgenic , Muscle Fibers, Skeletal/virology , Nucleocapsid Proteins , RNA, Messenger/genetics , RNA, Viral/genetics , RNA-Binding Proteins/genetics , Transfection , Transplantation Chimera , Viral Core Proteins/genetics
7.
Proc Natl Acad Sci U S A ; 112(19): 6056-61, 2015 May 12.
Article in English | MEDLINE | ID: mdl-25918416

ABSTRACT

Varicella-zoster virus (VZV), of the family Alphaherpesvirinae, causes varicella in children and young adults, potentially leading to herpes zoster later in life on reactivation from latency. The conserved herpesvirus glycoprotein gB and the heterodimer gHgL mediate virion envelope fusion with cell membranes during virus entry. Naturally occurring neutralizing antibodies against herpesviruses target these entry proteins. To determine the molecular basis for VZV neutralization, crystal structures of gHgL were determined in complex with fragments of antigen binding (Fabs) from two human monoclonal antibodies, IgG-94 and IgG-RC, isolated from seropositive subjects. These structures reveal that the antibodies target the same site, composed of residues from both gH and gL, distinct from two other neutralizing epitopes identified by negative-stain electron microscopy and mutational analysis. Inhibition of gB/gHgL-mediated membrane fusion and structural comparisons with herpesvirus homologs suggest that the IgG-RC/94 epitope is in proximity to the site on VZV gHgL that activates gB. Immunization studies proved that the anti-gHgL IgG-RC/94 epitope is a critical target for antibodies that neutralize VZV. Thus, the gHgL/Fab structures delineate a site of herpesvirus vulnerability targeted by natural immunity.


Subject(s)
Antibodies, Neutralizing/chemistry , Glycoproteins/chemistry , Herpesvirus 3, Human/immunology , Viral Envelope Proteins/chemistry , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Viral/immunology , Crystallography, X-Ray , Epitopes/chemistry , Humans , Immunoglobulin Fragments/chemistry , Mice , Models, Molecular , Neutralization Tests , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Surface Plasmon Resonance
8.
Adv Genet ; 89: 179-233, 2015.
Article in English | MEDLINE | ID: mdl-25620012

ABSTRACT

This chapter provides a brief introduction to nucleic acid-based vaccines and recent research in developing self-amplifying mRNA vaccines. These vaccines promise the flexibility of plasmid DNA vaccines with enhanced immunogenicity and safety. The key to realizing the full potential of these vaccines is efficient delivery of nucleic acid to the cytoplasm of a cell, where it can amplify and express the encoded antigenic protein. The hydrophilicity and strong net negative charge of RNA impedes cellular uptake. To overcome this limitation, electrostatic complexation with cationic lipids or polymers and physical delivery using electroporation or ballistic particles to improve cellular uptake has been evaluated. This chapter highlights the rapid progress made in using nonviral delivery systems for RNA-based vaccines. Initial preclinical testing of self-amplifying mRNA vaccines has shown nonviral delivery to be capable of producing potent and robust innate and adaptive immune responses in small animals and nonhuman primates. Historically, the prospect of developing mRNA vaccines was uncertain due to concerns of mRNA instability and the feasibility of large-scale manufacturing. Today, these issues are no longer perceived as barriers in the widespread implementation of the technology. Currently, nonamplifying mRNA vaccines are under investigation in human clinical trials and can be produced at a sufficient quantity and quality to meet regulatory requirements. If the encouraging preclinical data with self-amplifying mRNA vaccines are matched by equivalently positive immunogenicity, potency, and tolerability in human trials, this platform could establish nucleic acid vaccines as a versatile new tool for human immunization.


Subject(s)
RNA, Messenger/administration & dosage , Vaccines/administration & dosage , Animals , Antigens/genetics , Electroporation , Humans , Nanoparticles/administration & dosage , Nanoparticles/chemistry , RNA, Messenger/adverse effects , RNA, Messenger/genetics , Vaccines/adverse effects , Viral Vaccines
9.
Eur J Immunol ; 34(10): 2834-42, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15368299

ABSTRACT

As the human tetraspanin CD81 binds hepatitis C virus (HCV) envelope glycoprotein E2, we addressed the role CD81 may play in cellular trafficking of HCV envelope proteins. Studies on HCV life cycle are complicated by the lack of a robust cell culture system; we therefore transfected mammalian cells with HCV E1-E2 cDNA, with or without human CD81 (huCD81) cDNA. In the absence of huCD81, HCV envelope proteins are almost completely retained in the endoplasmic reticulum. Instead, when huCD81 is present, a fraction of HCV envelope proteins passes through the Golgi apparatus, matures acquiring complex sugars and is found extracellularly associated with exosomes. These are 60-100-nm membrane vesicles enriched in tetraspanins, released into the extracellular milieu by many cell types and having fusogenic activity. We also report that human plasma contains exosomes and that in HCV patients, viral RNA is associated with these circulating vesicles. We propose that the HCV-CD81 complex leaves cells in the form of exosomes, circulates in this form and exploits the fusogenic capabilities of these vesicles to infect cells even in the presence of neutralizing antibodies.


Subject(s)
Antigens, CD/metabolism , Protein Transport/physiology , Secretory Vesicles/metabolism , Viral Envelope Proteins/metabolism , Animals , Antigens, CD/immunology , CHO Cells , Cricetinae , Cricetulus , Flow Cytometry , Hepacivirus/pathogenicity , Hepatitis C/blood , Hepatitis C/immunology , Hepatitis C/metabolism , Humans , Immunoprecipitation , RNA, Viral/blood , RNA, Viral/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tetraspanin 28 , Transfection , Viral Envelope Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...