Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther ; 29(12): 3512-3524, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34400331

ABSTRACT

Lysosomal diseases are a class of genetic disorders predominantly caused by loss of lysosomal hydrolases, leading to lysosomal and cellular dysfunction. Enzyme replacement therapy (ERT), where recombinant enzyme is given intravenously, internalized by cells, and trafficked to the lysosome, has been applied to treat several lysosomal diseases. However, current ERT regimens do not correct disease phenotypes in all affected organs because the biodistribution of enzyme uptake does not match that of the affected cells that require the enzyme. We present here targeted ERT, an approach that utilizes antibody-enzyme fusion proteins to target the enzyme to specific cell types. The antibody moiety recognizes transmembrane proteins involved in lysosomal trafficking and that are also preferentially expressed in those cells most affected in disease. Using Pompe disease (PD) as an example, we show that targeted ERT is superior to ERT in treating the skeletal muscle phenotypes of PD mice both as a protein replacement therapeutic and as a gene therapy.


Subject(s)
Glycogen Storage Disease Type II , Lysosomal Storage Diseases , Animals , Enzyme Replacement Therapy , Glycogen Storage Disease Type II/drug therapy , Glycogen Storage Disease Type II/genetics , Hydrolases/metabolism , Lysosomal Storage Diseases/drug therapy , Lysosomal Storage Diseases/genetics , Lysosomes/metabolism , Mice , Tissue Distribution , alpha-Glucosidases/genetics
2.
Front Immunol ; 9: 2839, 2018.
Article in English | MEDLINE | ID: mdl-30564237

ABSTRACT

Cell surface glycans and their glycan-binding partners (lectins) have generally been recognized as adhesive assemblies with neighbor cells or matrix scaffolds in organs and the blood stream. However, our understanding of the roles for glycan-lectin interactions in immunity has expanded substantially to include regulation of nearly every stage of an immune response, from pathogen sensing to immune contraction. In this Mini-Review, we discuss the role of the ß-galactoside-binding lectins known as galectins specifically in the regulation of B-lymphocyte (B cell) development, activation, and differentiation. In particular, we highlight several recent studies revealing new roles for galectin (Gal)-9 in the modulation of B cell receptor-mediated signaling and activation in mouse and man. The roles for cell surface glycosylation, especially I-branching of N-glycans synthesized by the glycosyltransferase GCNT2, in the regulation of Gal-9 binding activity are also detailed. Finally, we consider how dysregulation of these factors may contribute to aberrant immune activation and autoimmune disease.


Subject(s)
B-Lymphocytes/immunology , Galectins/immunology , Immunity/immunology , Polysaccharides/immunology , Protein Binding/immunology , Animals , Glycosylation , Humans , Signal Transduction/immunology
3.
Nat Commun ; 9(1): 3368, 2018 08 22.
Article in English | MEDLINE | ID: mdl-30135430

ABSTRACT

Cancer cells often display altered cell-surface glycans compared to their nontransformed counterparts. However, functional contributions of glycans to cancer initiation and progression remain poorly understood. Here, from expression-based analyses across cancer lineages, we found that melanomas exhibit significant transcriptional changes in glycosylation-related genes. This gene signature revealed that, compared to normal melanocytes, melanomas downregulate I-branching glycosyltransferase, GCNT2, leading to a loss of cell-surface I-branched glycans. We found that GCNT2 inversely correlated with clinical progression and that loss of GCNT2 increased melanoma xenograft growth, promoted colony formation, and enhanced cell survival. Conversely, overexpression of GCNT2 decreased melanoma xenograft growth, inhibited colony formation, and increased cell death. More focused analyses revealed reduced signaling responses of two representative glycoprotein families modified by GCNT2, insulin-like growth factor receptor and integrins. Overall, these studies reveal how subtle changes in glycan structure can regulate several malignancy-associated pathways and alter melanoma signaling, growth, and survival.


Subject(s)
Melanoma/metabolism , Melanoma/pathology , N-Acetylhexosaminyltransferases/metabolism , Polysaccharides/metabolism , Animals , Cell Line, Tumor , Cell Survival/genetics , Cell Survival/physiology , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Humans , Melanoma/genetics , Mice , Mice, Knockout , N-Acetylglucosaminyltransferases/genetics , N-Acetylglucosaminyltransferases/metabolism , N-Acetylhexosaminyltransferases/genetics , Receptors, Interleukin-2/genetics , Receptors, Interleukin-2/metabolism , Signal Transduction/genetics , Signal Transduction/physiology
4.
Front Immunol ; 9: 2857, 2018.
Article in English | MEDLINE | ID: mdl-30619255

ABSTRACT

Germinal centers (GC) are microanatomical niches where B cells proliferate, undergo antibody affinity maturation, and differentiate to long-lived memory B cells and antibody-secreting plasma cells. For decades, GC B cells have been defined by their reactivity to the plant lectin peanut agglutinin (PNA), which binds serine/threonine (O-linked) glycans containing the asialylated disaccharide Gal-ß1,3-GalNAc-Ser/Thr (also called T-antigen). In T cells, acquisition of PNA binding by activated T cells and thymocytes has been linked with altered tissue homing patterns, cell signaling, and survival. Yet, in GC B cells, the glycobiological basis and significance of PNA binding remains surprisingly unresolved. Here, we investigated the basis for PNA reactivity of GC B cells. We found that GC B cell binding to PNA is associated with downregulation of the α2,3 sialyltransferase, ST3GAL1 (ST3Gal1), and overexpression of ST3Gal1 was sufficient to reverse PNA binding in B cell lines. Moreover, we found that the primary scaffold for PNA-reactive O-glycans in B cells is the B cell receptor-associated receptor-type tyrosine phosphatase CD45, suggesting a role for altered O-glycosylation in antigen receptor signaling. Consistent with similar reports in T cells, ST3Gal1 overexpression in B cells in vitro induced drastic shortening in O-glycans, which we confirmed by both antibody staining and mass spectrometric O-glycomic analysis. Unexpectedly, ST3Gal1-induced changes in O-glycan length also correlated with altered binding of two glycosylation-sensitive CD45 antibodies, RA3-6B2 (more commonly called B220) and MEM55, which (in humans) have previously been reported to favor binding to naïve/GC subsets and memory/plasmablast subsets, respectively. Analysis of primary B cell binding to B220, MEM55, and several plant lectins suggested that B cell differentiation is accompanied by significant loss of O-glycan complexity, including loss of extended Core 2 O-glycans. To our surprise, decreased O-glycan length from naïve to post-GC fates best correlated not with ST3Gal1, but rather downregulation of the Core 2 branching enzyme GCNT1. Thus, our data suggest that O-glycan remodeling is a feature of B cell differentiation, dually regulated by ST3Gal1 and GCNT1, that ultimately results in expression of distinct O-glycosylation states/CD45 glycoforms at each stage of B cell differentiation.


Subject(s)
B-Lymphocytes/immunology , Cell Differentiation/immunology , Polysaccharides/immunology , Signal Transduction/immunology , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , Cell Differentiation/genetics , Cell Line, Tumor , Cells, Cultured , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Germinal Center/cytology , Germinal Center/immunology , Germinal Center/metabolism , Glycosylation , Humans , Lectins/immunology , Lectins/metabolism , Peanut Agglutinin/immunology , Peanut Agglutinin/metabolism , Polysaccharides/metabolism , Sialyltransferases/genetics , Sialyltransferases/immunology , Sialyltransferases/metabolism , Signal Transduction/genetics , beta-Galactoside alpha-2,3-Sialyltransferase
5.
J Immunol ; 194(5): 2319-29, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25637024

ABSTRACT

Understanding the cellular populations and mechanisms responsible for overcoming immune compartmentalization is valuable for designing vaccination strategies targeting distal mucosae. In this study, we show that the human pathogen Chlamydia trachomatis infects the murine respiratory and genital mucosae and that T cells, but not Abs, elicited through intranasal immunization can protect against a subsequent transcervical challenge. Unlike the genital infection where CD8(+) T cells are primed, yet fail to confer protection, we found that intranasal priming engages both CD4(+) and CD8(+) T cells, allowing for protection against genital infection with C. trachomatis. The protection is largely dependent on IFN-γ secretion by T cells. Moreover, different chemokine receptors are critical for C. trachomatis-specific CD4(+) T cells to home to the lung, rather than the CXCR3- and CCR5-dependent migration observed during genital infection. Overall, this study demonstrates that the cross-mucosa protective immunity against genital C. trachomatis infection following intranasal immunization is not dependent on Ab response but is mediated by not only CD4(+) T cells but also by CD8(+) T cells. This study provides insights for the development of vaccines against mucosal pathogens that threaten reproductive health worldwide.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Chlamydia Infections/prevention & control , Immunity, Cellular , Interferon-gamma/metabolism , Mucous Membrane/immunology , Administration, Intranasal , Animals , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/microbiology , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/microbiology , CD8-Positive T-Lymphocytes/pathology , Cell Movement , Chlamydia Infections/immunology , Chlamydia Infections/microbiology , Chlamydia Infections/pathology , Chlamydia trachomatis/immunology , Female , Humans , Immunization , Interferon-gamma/biosynthesis , Lung/immunology , Lung/microbiology , Lung/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mucous Membrane/microbiology , Mucous Membrane/pathology , Uterus/immunology , Uterus/microbiology , Uterus/pathology
6.
Front Neurol ; 4: 190, 2013.
Article in English | MEDLINE | ID: mdl-24302918

ABSTRACT

Although mild traumatic brain injury (mTBI), or concussion, is not typically associated with abnormalities on computed tomography (CT), it nevertheless causes persistent cognitive dysfunction for many patients. Consequently, new prognostic methods for mTBI are needed to identify at risk cases, especially at an early and potentially treatable stage. Here, we quantified plasma levels of the neurodegeneration biomarker calpain-cleaved αII-spectrin N-terminal fragment (SNTF) from 38 participants with CT-negative mTBI, orthopedic injury (OI), and normal uninjured controls (UCs) (age range 12-30 years), and compared them with findings from diffusion tensor imaging (DTI) and long-term cognitive assessment. SNTF levels were at least twice the lower limit of detection in 7 of 17 mTBI cases and in 3 of 13 OI cases, but in none of the UCs. An elevation in plasma SNTF corresponded with significant differences in fractional anisotropy and the apparent diffusion coefficient in the corpus callosum and uncinate fasciculus measured by DTI. Furthermore, increased plasma SNTF on the day of injury correlated significantly with cognitive impairment that persisted for at least 3 months, both across all study participants and also among the mTBI cases by themselves. The elevation in plasma SNTF in the subset of OI cases, accompanied by corresponding white matter and cognitive abnormalities, raises the possibility of identifying undiagnosed cases of mTBI. These data suggest that the blood level of SNTF on the day of a CT-negative mTBI may identify a subset of patients at risk of white matter damage and persistent disability. SNTF could have prognostic and diagnostic utilities in the assessment and treatment of mTBI.

7.
Aging Dis ; 3(2): 141-55, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22724075

ABSTRACT

It has been challenging to develop transgenic and gene-targeted mouse models that recapitulate all of the neuropathological features of Alzheimer's disease (AD). For example, in the APP/PS-1 double knock-in mutant mouse (DKI), frank neurodegeneration is not observed at middle age and synapse loss is pronounced only within amyloid plaques. Here, we investigated whether continued amyloid deposition and advanced age of 24-27 months lead to loss of neurons and synapses, tau hyperphosphorylation, and other pathological features of AD. We focused on the perforant pathway projection from entorhinal cortex to hippocampal dentate gyrus, since it is preferentially impacted by plaques, tangles, and neuronal loss early in the course of AD. Compared with wild type controls matched for age and gender, expression of neither reelin nor NeuN was altered in the entorhinal layer 2 neurons of origin. Retrograde labeling of the perforant pathway with Fluorogold indicated no cell loss, axonal atrophy, or nerve terminal degeneration. The lack of neuronal loss or atrophy was confirmed by volumetric analysis of the ventral dentate gyrus and immunostaining for a synaptic marker. We also searched for other hallmarks of AD neuropathology by labeling for hyperphosphorylated pre-tangle tau, accumulation of cathepsin D-containing autolysosomes, and cyclin A-positive neurons aberrantly re-entering the cell cycle. None of these AD pathologies were observed in the entorhinal cortex, dentate gyrus, or any other forebrain region. Our results indicate that the DKI mouse does not show appreciable Alzheimer-type disease progression, even at advanced age and in the phase of over 18 months of robust cerebral amyloid deposition. The insufficiency of amyloid deposition to induce other AD-type neuropathologies and neurodegeneration in the aging mouse brain suggests an important role for tauopathy or other factors for triggering the pathogenesis of AD.

8.
PLoS One ; 6(12): e28938, 2011.
Article in English | MEDLINE | ID: mdl-22174930

ABSTRACT

Biomarkers for neurodegeneration could be early prognostic measures of brain damage and dysfunction in aneurysmal subarachnoid hemorrhage (aSAH) with clinical and medical applications. Recently, we developed a new panel of neurodegeneration biomarkers, and report here on their relationships with pathophysiological complications and outcomes following severe aSAH. Fourteen patients provided serial cerebrospinal fluid samples for up to 10 days and were evaluated by ultrasonography, angiography, magnetic resonance imaging, and clinical examination. Functional outcomes were assessed at hospital discharge and 6-9 months thereafter. Eight biomarkers for acute brain damage were quantified: calpain-derived α-spectrin N- and C-terminal fragments (CCSntf and CCSctf), hypophosphorylated neurofilament H,14-3-3 ß and ζ, ubiquitin C-terminal hydrolase L1, neuron-specific enolase, and S100ß. All 8 biomarkers rose up to 100-fold in a subset of patients. Better than any single biomarker, a set of 6 correlated significantly with cerebral vasospasm, brain infarction, and poor outcome. Furthermore, CSF levels of 14-3-3ß, CCSntf, and NSE were early predictors of subsequent moderate-to-severe vasospasm. These data provide evidence that a panel of neurodegeneration biomarkers may predict lasting brain dysfunction and the pathophysiological processes that lead to it following aSAH. The panel may be valuable as surrogate endpoints for controlled clinical evaluation of treatment interventions and for guiding aSAH patient care.


Subject(s)
Brain Infarction/complications , Nerve Degeneration/complications , Subarachnoid Hemorrhage/complications , Subarachnoid Hemorrhage/therapy , Vasospasm, Intracranial/complications , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers/cerebrospinal fluid , Brain Infarction/cerebrospinal fluid , Female , Humans , Male , Middle Aged , Nerve Degeneration/cerebrospinal fluid , Subarachnoid Hemorrhage/cerebrospinal fluid , Subarachnoid Hemorrhage/pathology , Time Factors , Treatment Outcome , Vasospasm, Intracranial/cerebrospinal fluid , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...