Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogene ; 31(33): 3807-17, 2012 Aug 16.
Article in English | MEDLINE | ID: mdl-22120716

ABSTRACT

Post-translational modifications of Notch3 and their functional role with respect to Notch3 overexpression in T-cell leukemia are still poorly understood. We identify here a specific novel property of Notch3 that is acetylated and deacetylated at lysines 1692 and 1731 by p300 and HDAC1, respectively, a balance impaired by HDAC inhibitors (HDACi) that favor hyperacetylation. By using HDACi and a non-acetylatable Notch3 mutant carrying K/R(1692-1731) mutations in the intracellular domain, we show that Notch3 acetylation primes ubiquitination and proteasomal-mediated degradation of the protein. As a consequence, Notch3 protein expression and its transcriptional activity are decreased both in vitro and in vivo in Notch3 transgenic (tg) mice, thus impairing downstream signaling upon target genes. Consistently, Notch3-induced T-cell proliferation is inhibited by HDACi, whereas it is enhanced by the non-acetylatable Notch3-K/R(1692-1731) mutant. Finally, HDACi-induced Notch3 hyperacetylation prevents in vivo growth of T-cell leukemia/lymphoma in Notch3 tg mice. Together, our findings suggest a novel level of Notch signaling control in which Notch3 acetylation/deacetylation process represents a key regulatory switch, thus representing a suitable druggable target for Notch3-sustained T-cell acute lymphoblastic leukemia therapy.


Subject(s)
Leukemia, T-Cell/etiology , Receptors, Notch/physiology , Acetylation , Animals , HEK293 Cells , Histone Deacetylase Inhibitors/therapeutic use , Humans , Leukemia, T-Cell/drug therapy , Lymphocyte Activation , Mice , Proteasome Endopeptidase Complex/physiology , Receptor, Notch3 , T-Lymphocytes/immunology , Ubiquitination
2.
Oncogene ; 29(10): 1463-74, 2010 Mar 11.
Article in English | MEDLINE | ID: mdl-19966856

ABSTRACT

Notch3 and pTalpha signaling events are essential for T-cell leukemogenesis and characterize murine and human T-cell acute lymphoblastic leukemia. Genetic ablation of pTalpha expression in Notch3 transgenic mice abrogates tumor development, indicating that pTalpha signaling is crucial to the Notch3-mediated leukemogenesis. Here we report a novel direct interaction between Notch3 and pTalpha. This interaction leads to the recruitment and persistence of the E3 ligase protein c-Cbl to the lipid rafts in Notch3-IC transgenic thymocytes. Conversely, deletion of pTalpha in Notch3 transgenic mice leads to cytoplasmic retention of c-Cbl that targets Notch3 protein to the proteasomal-degradative pathway. It appears that protein kinase C theta (PKCtheta), by regulating tyrosine and serine phosphorylation of Cbl, is able to control its function. We report here that the increased Notch3-IC degradation correlates with higher levels of c-Cbl tyrosine phosphorylation in Notch3-IC/pTalpha(-/-) double-mutant thymocytes, which also display a decreased PKCtheta activity. Our data indicate that pTalpha/pre-T-cell receptor is able to regulate the different subcellular localization of c-Cbl and, by regulating PKCtheta activity, is also able to influence its ubiquitin ligase activity upon Notch3 protein.


Subject(s)
Leukemia, T-Cell/metabolism , Proto-Oncogene Proteins c-cbl/metabolism , Receptors, Notch/metabolism , Signal Transduction , Animals , Blotting, Western , Cell Line , Intracellular Space/metabolism , Isoenzymes/metabolism , Leukemia, T-Cell/genetics , Leukemia, T-Cell/pathology , Membrane Microdomains/metabolism , Mice , Mice, Knockout , Mice, Transgenic , Models, Biological , Phosphorylation , Proteasome Endopeptidase Complex/metabolism , Protein Binding , Protein Kinase C/metabolism , Protein Kinase C-theta , Proto-Oncogene Proteins c-cbl/genetics , RNA Interference , Receptor, Notch3 , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Receptors, Notch/genetics , Thymus Gland/metabolism , Thymus Gland/pathology , Transfection , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...