Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38562752

ABSTRACT

Opioid drugs are potent analgesics that mimic the endogenous opioid peptides, endorphins and enkephalins, by activating the µ-opioid receptor. Opioid use is limited by side effects, including significant risk of opioid use disorder. Improvement of the effect/side effect profile of opioid medications is a key pursuit of opioid research, yet there is no consensus on how to achieve this goal. One hypothesis is that the degree of arrestin-3 recruitment to the µ-opioid receptor impacts therapeutic utility. However, it is not clear whether increased or decreased interaction of the µ-opioid receptor with arrestin-3 would reduce compulsive drug-seeking. To examine this question, we utilized three genotypes of mice with varying abilities to recruit arrestin-3 to the µ-opioid receptor in response to morphine in a novel longitudinal operant self-administration model. We demonstrate that arrestin-3 knockout and wild type mice have highly variable drug-seeking behavior with few genotype differences. In contrast, in mice where the µ-opioid receptor strongly recruits arrestin-3, drug-seeking behavior is much less varied. We created a quantitative method to define compulsivity in drug-seeking and found that mice lacking arrestin-3 were more likely to meet the criteria for compulsivity whereas mice with enhanced arrestin-3 recruitment did not develop a compulsive phenotype. Our data suggest that opioids that engage both G protein and arrestin-3, recapitulating the endogenous signaling pattern, will reduce abuse liability.

2.
Genes (Basel) ; 14(3)2023 03 19.
Article in English | MEDLINE | ID: mdl-36981018

ABSTRACT

Background:TP53 is the most commonly mutated gene in human cancer with loss of function mutations largely concentrated in "hotspots" affecting DNA binding. APR-246 and COTI-2 are small molecules under investigation in P53 mutated cancers. APR binds to P53 cysteine residues, altering conformation, while COTI-2 showed activity in P53 mutant tumors by a computational platform. We compared APR-246 and COTI-2 activity in human tumor explants from 247 surgical specimens. Methods: Ex vivo analyses of programmed cell death measured drug-induced cell death by delayed-loss-of-membrane integrity and ATP content. The LC50s were compared by Z-Score. Synergy was conducted by the method of Chou and Talalay, and correlations were performed by Pearson moment. Results: APR-246 and COTI-2 activity favored hematologic neoplasms, but solid tumor activity varied by diagnosis. COTI-2 and APR-246 activity did not correlate (R = 0.1028) (NS). COTI-2 activity correlated with nitrogen mustard, cisplatin and gemcitabine, doxorubicin and selumetinib, with a trend for APR-246 with doxorubicin. For ovarian cancer, COTI-2 showed synergy with cisplatin at 25%. Conclusions: COTI-2 and APR-246 activity differ by diagnosis. A lack of correlation supports distinct modes of action. Cisplatin synergy is consistent with P53's role in DNA damage. Different mechanisms of action may underlie disease specificity and offer better disease targeting.


Subject(s)
Antineoplastic Agents , Ovarian Neoplasms , Female , Humans , Cisplatin , Tumor Suppressor Protein p53/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Ovarian Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...