Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 12: 658980, 2021.
Article in English | MEDLINE | ID: mdl-34295313

ABSTRACT

The skin functions as a protective barrier to inhibit the entry of foreign pathogens, all the while hosting a diverse milieu of microorganisms. Over time, skin cells, immune cells, cytokines, and microbes interact to integrate the processes of maintaining the skin's physical and immune barrier. In the present study, the basal expression of two immunologically divergent mouse strains C57BL/6 and BALB/c, as well as a strain on the C57 background lacking IL-6, was characterized. Additionally, cutaneous antimicrobial gene expression profiles and skin bacterial microbiome were assessed between strains. Total RNA sequencing was performed on untreated C57BL/6 (control), BALB/c, and IL-6-deficient skin samples and found over 3,400 genes differentially modulated between strains. It was found that each strain modulated its own transcriptional "profile" associated with skin homeostasis and also influenced the overall bacterial colonization as indicated by the differential phyla present on each strain. Together, these data not only provide a comprehensive view of the transcriptional changes in homeostatic skin of different mouse strains but also highlight the possible influence of the strain differences (e.g., Th1/Th2 balance) as well as a role for IL-6 in overall skin immunity and resident microbial populations.

2.
Front Immunol ; 9: 2751, 2018.
Article in English | MEDLINE | ID: mdl-30538705

ABSTRACT

MicroRNA (miR) miR-155 modulates microglial activation and polarization, but its role in activation of microglia during bacterial brain infection is unclear. We studied miR-155 expression in brains of C57BL/6 (B6.WT) mice infected i.p. with the neuro-invasive bacterial pathogen Listeria monocytogenes (L. monocytogenes). Infected mice were treated with ampicillin starting 2 days (d) post-infection (p.i.) and analyzed 3d, 7d, and 14d p.i. Virulent L. monocytogenes strains EGD and 10403s upregulated miR-155 in whole brain 7 d p.i. whereas infection with avirulent, non-neurotropic Δhly or ΔactA L. monocytogenes mutants did not. Similarly, infection with virulent but not mutated bacteria upregulated IFN-γ mRNA in the brain at 7 d p.i. Upregulation of miR-155 in microglia was confirmed by qPCR of flow cytometry-sorted CD45intCD11bpos brain cells. Subsequently, brain leukocyte influxes and gene expression in sorted microglia were compared in L. monocytogenes-infected B6.WT and B6.Cg-Mir155tm1.1Rsky/J (B6.miR-155-/-) mice. Brain influxes of Ly-6Chigh monocytes and upregulation of IFN-related genes in microglia were similar to B6.WT mice at 3 d p.i. In contrast, by d 7 p.i. expressions of microglial IFN-related genes, including markers of M1 polarization, were significantly lower in B6.miR-155-/- mice and by 14 d p.i., influxes of activated T-lymphocytes were markedly reduced. Notably, CD45highCD11bpos brain cells from B6.miR-155-/- mice isolated at 7 d p.i. expressed 2-fold fewer IFN-γ transcripts than did cells from B6.WT mice suggesting reduced IFN-γ stimulation contributed to dampened gene expression in B6.miR-155-/- microglia. Lastly, in vitro stimulation of 7 d p.i. brain cells with heat-killed L. monocytogenes induced greater production of TNF in B6.miR-155-/- microglia than in B6.WT microglia. Thus, miR-155 affects brain inflammation by multiple mechanisms during neuroinvasive L. monocytogenes infection. Peripheral miR-155 promotes brain inflammation through its required role in optimal development of IFN-γ-secreting lymphocytes that enter the brain and activate microglia. Microglial miR-155 promotes M1 polarization, and also inhibits inflammatory responses to stimulation by heat-killed L. monocytogenes, perhaps by targeting Tab2.


Subject(s)
Interferon-gamma/immunology , Listeria monocytogenes/immunology , MicroRNAs/immunology , Microglia/immunology , Up-Regulation/immunology , Animals , Cell Communication/immunology , Encephalitis/genetics , Encephalitis/immunology , Female , Gene Expression/genetics , Gene Expression/immunology , Interferon-gamma/genetics , Listeriosis/genetics , Listeriosis/immunology , Listeriosis/microbiology , Macrophages/immunology , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Microglia/microbiology , Monocytes/immunology , RNA, Messenger/genetics , RNA, Messenger/immunology , T-Lymphocytes/immunology , Up-Regulation/genetics
3.
Toxicology ; 410: 1-9, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30171875

ABSTRACT

BACKGROUND: Irritant contact dermatitis (ICD) is a cutaneous inflammatory response to a variety of triggers that requires no sensitization and accounts for up to 80% of occupational dermatitis cases. IL-6 has been alternately associated with both allergic and irritant dermatitis and is closely linked to skin wound healing, therefore making it an ideal candidate to investigate in the mechanism of ICD. RESULTS: Despite being a well-known pro-inflammatory cytokine, IL-6 deficient (IL-6KO) mice show much more severe ICD than controls. Transcriptome analysis was employed to examine irritant-exposed and control skin samples from C57BL/6 and IL-6KO mice. Over 1900 transcripts were found differentially modulated between C57 (1184 total) and IL-6KO (802 total) mice with the magnitude of expression significantly disparate. Overall gene ontology revealed metabolic and cellular enriched functional processes but numerous pro-inflammatory and immune associated genes (Cxcl2, Cxcl3, Cxcl5, Acod, Hamp, c-Lectins, for example), keratin associated genes (Krt6b and various Krtaps), and members of the Sprr and Lce family, which promote skin barrier integrity and keratinocyte functions, were also differentially modulated. CONCLUSIONS: The altered expression of these genes may provide a potential mechanism to explain the increased ICD severity in IL-6-deficient mice. Overall, this study offers new insight into the pathogenesis of ICD, indicates new mediators/biomarkers that may influence the variability of responses to irritants and provides potential targets for therapeutic development.


Subject(s)
Dermatitis, Contact/genetics , Dermatitis, Contact/immunology , Gene Expression Profiling , Gene Expression/genetics , Interleukin-6/genetics , Irritants , Animals , Benzalkonium Compounds , Immunity/genetics , Interleukin-6/biosynthesis , Keratinocytes/immunology , Keratinocytes/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Skin/pathology , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...