Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Biomed Pharmacother ; 171: 116104, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38198956

ABSTRACT

Despite the abundance of registered clinical trials worldwide, the availability of effective drugs for obesity treatment is limited due to their associated side effects. Thus, there is growing interest in therapies that stimulate energy expenditure in white adipose tissue. Recently, we demonstrated that the delivery of a miR-21 mimic using JetPEI effectively inhibits weight gain in an obese mouse model by promoting metabolism, browning, and thermogenesis, suggesting the potential of miR-21 mimic as a treatment for obesity. Despite these promising results, the implementation of more advanced delivery system techniques for miR-21 mimic would greatly enhance the advancement of safe and efficient treatment approaches for individuals with obesity in the future. Our objective is to explore whether a new delivery system based on gold nanoparticles and Gemini surfactants (Au@16-ph-16) can replicate the favorable effects of the miR-21 mimic on weight gain, browning, and thermogenesis. We found that dosages as low as 0.2 µg miR-21 mimic /animal significantly inhibited weight gain and induced browning and thermogenic parameters. This was evidenced by the upregulation of specific genes and proteins associated with these processes, as well as the biogenesis of beige adipocytes and mitochondria. Significant increases in miR-21 levels were observed in adipose tissue but not in other tissue types. Our data indicates that Au@16-ph-16 could serve as an effective delivery system for miRNA mimics, suggesting its potential suitability for the development of future clinical treatments against obesity.


Subject(s)
Metal Nanoparticles , MicroRNAs , Obesity , Animals , Mice , Adipose Tissue, Brown/metabolism , Energy Metabolism , Gold/pharmacology , Hydrogen-Ion Concentration , Mice, Inbred C57BL , MicroRNAs/genetics , Obesity/drug therapy , Thermogenesis , Weight Gain
2.
Antibiotics (Basel) ; 12(8)2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37627696

ABSTRACT

Compacted Au@16-mph-16/DNA-AMOX (NSi) nanosystems were prepared from amoxicillin (AMOX) and precursor Au@16-mph-16 gold nanoparticles (Ni) using a Deoxyribonucleic acid (DNA) biopolymer as a glue. The synthesized nanocarrier was tested on different bacterial strains of Escherichia coli, Staphylococcus aureus, and Streptococcus pneumoniae to evaluate its effectiveness as an antibiotic as well as its internalization. Synthesis of the nanosystems required previous structural and thermodynamic studies using circular dichroism (CD) and UV-visible techniques to guarantee optimal complex formation and maximal DNA compaction, characteristics which facilitate the correct uptake of the nanocarrier. Two nanocomplexes with different compositions and structures, denoted NS1 and NS2, were prepared, the first involving external Au@16-mph-16 binding and the second partial intercalation. The Ni and NSi nanosystems obtained were characterized via transmission electron microscopy (TEM), zeta potential, and dynamic light scattering (DLS) techniques to measure their charge, aggregation state and hydrodynamic size, and to verify their presence inside the bacteria. From these studies, it was concluded that the zeta potential values for gold nanoparticles, NS1, and NS2 nanosystems were 67.8, -36.7, and -45.1 mV. Moreover, the particle size distribution of the Au@16-mph-16 gold nanoparticles and NS2 nanoformulation was found to be 2.6 nm and 69.0 nm, respectively. However, for NS1 nanoformulation, a bimodal size distribution of 44 nm (95.5%) and 205 nm (4.5%) was found. Minimal inhibitory concentration (MIC) values were determined for the bacteria studied using a microdilution plates assay. The effect on Escherichia coli bacteria was notable, with MIC values of 17 µM for both the NS1 and NS2 nanosystems. The Staphylococcus aureus chart shows a greater inhibition effect of NS2 and NP2 in non-diluted wells, and clearly reveals a great effect on Streptococcus pneumoniae, reaching MIC values of 0.53 µM in more diluted wells. These results are in good agreement with TEM internalization studies of bacteria that reveal significant internalization and damage in Streptococcus pneumoniae. In all the treatments carried out, the antibiotic capacity of gold nanosystems as enhancers of amoxicillin was demonstrated, causing both the precursors and the nanosystems to act very quickly, and thus favoring microbial death with a small amount of antibiotic. Therefore, these gold nanosystems may constitute an effective therapy to combat resistance to antibiotics, in addition to avoiding the secondary effects derived from the administration of high doses of antibiotics.

3.
Int J Mol Sci ; 23(24)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36555216

ABSTRACT

Different gold nanosystems covered with DNA and doxorubicin (Doxo) were designed and synthesized for cancer therapy, starting from Au@16-Ph-16 cationic nanoparticles and DNA-Doxo complexes prepared under saturation conditions. For the preparation of stable, biocompatible, and small-sized compacted Au@16-Ph-16/DNA-Doxo nanotransporters, the conditions for the DNA-Doxo compaction process induced by gold nanoparticles were first explored using fluorescence spectroscopy, circular dichroism and atomic force microscopy techniques. The reverse process, which is fundamental for Doxo liberation at the site of action, was found to occur at higher CAu@16-Ph-16 concentrations using these techniques. Zeta potential, dynamic light scattering and UV-visible spectroscopy reveal that the prepared compacted nanosystems are stable, highly charged and of adequate size for the effective delivery of Doxo to the cell. This fact is verified by in vitro biocompatibility and internalization studies using two prostate cancer-derived cell lines (LNCaP and DU145) and one hepatocellular carcinoma-derived cell line (SNU-387), as well as a non-tumor prostate (PNT2) cell line and a non-hepatocarcinoma hepatoblastoma cell line (Hep-G2) model used as a control in liver cells. However, the most outstanding results of this work are derived from the use of the CI+NI combined treatments which present strong action in cancer-derived cell lines, while a protective effect is observed in non-tumor cell lines. Hence, novel therapeutic targets based on gold nanoparticles denote high selectivity compared to conventional treatment based on free Doxo at the same concentration. The results obtained show the viability of both the proposed methodology for internalization of compacted nanocomplexes inside the cell and the effectiveness of the possible treatment and minimization of side effects in prostate and liver cancer.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Metal Nanoparticles , Male , Humans , Gold , Prostate , Doxorubicin/pharmacology , Doxorubicin/chemistry , Liver Neoplasms/drug therapy , DNA , Cell Line, Tumor
4.
Pharmaceutics ; 14(9)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36145689

ABSTRACT

Antimicrobial resistance (AMR) is a serious public health problem worldwide which, according to the World Health Organization (WHO), requires research into new and more effective drugs. In this work, both gold nanoparticles covered with 16-3-16 cationic gemini surfactant (Au@16-3-16) and DNA/tetracycline (DNA/TC) intercalated complexes were prepared to effectively transport tetracycline (TC). Synthesis of the Au@16-3-16 precursor was carried out by using trihydrated gold, adding sodium borohydride as a reducing agent and the gemini surfactant 16-3-16 as stabilizing agent. Circular dichroism and atomic force microscopy techniques were then used to ascertain the optimal R range of the relationship between the concentrations of Au@16-3-16 and the DNA/TC complex (R = CAu@16-3-16/CDNA) that allow the obtainment of stable and compact nanosystems, these characteristics being fundamental for their use as antibiotic transporters. Stability studies over time were carried out for distinct selected Au@16-3-16 and Au@16-3-16/DNA-TC nanoformulations using the ultraviolet−visible spectrophotometry technique, checking their stability for at least one month. In addition, in order to know the charge and size distribution of the nanocomplexes, DLS and zeta potential measurements were performed in the solution. The results showed that the characterized nanosystems were highly charged, stable and of a reduced size (<100 nm) that allows them to cross bacterial membranes effectively (>1 µm). Once the different physicochemical characteristics of the gold nanosystems were measured, Au@16-3-16 and Au@16-3-16/DNA-TC were tested on Escherichia coli and Staphylococcus aureus to study their antibacterial properties and internalization capacity in microbes. Differences in the interaction of the precursors and the compacted nanosystems generated were observed in Gram-positive and Gram-negative bacteria, possibly due to membrane damage or electrostatic interaction with internalization by endocytosis. In the internalization experiments, depending on the treatment application time, the greatest bacterial destruction was observed for all nanoformulations explored at 18 h of incubation. Importantly, the results obtained demonstrate that both new nanosystems based on TC and Au@16-3-16 precursors have optimal antimicrobial properties and would be beneficial for use in patients, avoiding possible side effects.

5.
Mol Ther Nucleic Acids ; 26: 401-416, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34552821

ABSTRACT

MicroRNAs (miRNAs) are promising drug targets for obesity and metabolic disorders. Recently, miRNA mimics are providing a unique mechanism of action that guides the process for drug development and sets out the context of their therapeutic application. miRNA (miR)-21 expression in white adipose tissue (WAT) has been associated with obesity. We aimed to analyze miR-21 expression levels in relation to diabetes and obesity to determine the effect that miR-21 mimic has on processes involved in WAT functionality, to dissect the underlying molecular mechanisms, and to study the potential therapeutic application of the miR-21 mimic against obesity. We found higher miR-21 levels in WAT from non-diabetic obese compared to normoweight humans and mice. Moreover, in 3T3-L1 adipocytes, miR-21 mimic affect genes involved in WAT functionality regulation and significantly increase the expression of genes involved in browning and thermogenesis. Interestingly, in vivo treatment with the miR-21 mimic blocked weight gain induced by a high-fat diet in obese mice, without modifying food intake or physical activity. This was associated with metabolic enhancement, WAT browning, and brown adipose tissue (AT) thermogenic programming through vascular endothelial growth factor A (VEGF-A), p53, and transforming growth factor ß1 (TGF-ß1) signaling pathways. Our findings suggest that miR-21 mimic-based therapy may provide a new opportunity to therapeutically manage obesity and consequently, its associated alterations.

6.
Animals (Basel) ; 11(8)2021 Aug 08.
Article in English | MEDLINE | ID: mdl-34438797

ABSTRACT

In equine reproduction, accurate and timely detection of the moment of ovulation is of great importance. Power Doppler ultrasound technology is a non-invasive method that enables to assess the morpho-echogenic features and blood flow changes during the estral cycle in mares. The objective of the present study was to evaluate the influence of age on ultrasonographic parameters (follicular diameter, follicular blood flow-FBF, corpus luteum (CL) area and corpus luteum blood flow-CLBF) and blood plasma progesterone concentrations in cycling Spanish Purebred mares (15 less than 8 years old and 15 equal o higher than 8 years old). The ultrasound images obtained were analyzed with the Image Colour Summarizer software, which allows the quantification of the pixels of each image. Young mares had significantly higher FBF, CLBF and plasma progesterone levels. Moreover, linear regression analysis showed that blood progesterone levels could be predicted in both groups from CLBF with moderate precision and accuracy. In conclusion, Power Doppler was useful to assess ovarian hemodynamics. Our results support that age is a factor that significantly influences FBF and CLBF as well as blood progesterone concentration in mares. More studies would be needed to develop high precision and accuracy predictive models of blood progesterone concentration from CLBF measured by Power Doppler.

7.
Nanomaterials (Basel) ; 11(8)2021 Aug 22.
Article in English | MEDLINE | ID: mdl-34443969

ABSTRACT

Investigation and optimization of lysozyme (Lys) adsorption onto gold nanoparticles, AuNPs, were carried out. The purpose of this study is to determine the magnitude of the AuNPs-lysozyme interaction in aqueous media by simple spectrophotometric means, and to obtain the free energy of binding of the system for the first time. In order to explore the possibilities of gold nanoparticles for sensing lysozyme in aqueous media, the stability of the samples and the influence of the gold and nanoparticle concentrations in the detection limit were studied. ζ potential measurements and the shift of the surface plasmon band showed a state of saturation with an average number of 55 Lys per gold nanoparticle. Lysozyme-AuNPs interactions induce aggregation of citrate-stabilized AuNPs at low concentrations by neutering the negative charges of citrate anions; from those aggregation data, the magnitude of the interactions has been measured by using Benesi-Hildebrand plots. However, at higher protein concentrations aggregation has been found to decrease. Although the nanocluster morphology remains unchanged in the presence of Lys, slight conformational changes of the protein occur. The influence of the size of the nanoclusters was also investigated for 5, 10, and 20 nm AuNPs, and 10 nm AuNPs was found the most appropriate.

8.
Pharmaceutics ; 13(3)2021 Mar 21.
Article in English | MEDLINE | ID: mdl-33801142

ABSTRACT

The design and preparation of novel nanocarriers to transport cancer drugs for chemotherapy purposes is an important line of research in the medical field. A new 5-fluorouracil (5-Fu) transporter was designed based on the use of two new biocompatible gold nanosystems: (i) a gold nanoparticle precursor, Au@16-Ph-16, stabilized with the positively charged gemini surfactant 16-Ph-16, and (ii) the compacted nanocomplexes formed by the precursor and DNA/5-Fu complexes, Au@16-Ph-16/DNA-5-Fu. The physicochemical properties of the obtained nanosystems were studied by using UV-visible spectroscopy, TEM, dynamic light scattering, and zeta potential techniques. Method tuning also requires the use of circular dichroism, atomic force microscopy, and fluorescence spectroscopy techniques for the prior selection of the optimal relative Au@16-Ph-16 and DNA concentrations (R = CAu@16-Ph-16/CDNA), biopolymer compaction/decompaction, and 5-Fu release from the DNA/5-Fu complex. TEM experiments revealed the effective internalization of the both precursor and Au@16-Ph-16/DNA-5-Fu-compacted nanosystems into the cells. Moreover, cytotoxicity assays and internalization experiments using TEM and confocal microscopy showed that the new strategy for 5-Fu administration enhanced efficacy, biocompatibility and selectivity against lung cancer cells. The differential uptake among different formulations is discussed in terms of the physicochemical properties of the nanosystems.

9.
RSC Adv ; 10(7): 3861-3871, 2020 Jan 22.
Article in English | MEDLINE | ID: mdl-35492653

ABSTRACT

Electrogenerated chemiluminescence (ECL) efficiencies, redox potentials, photoluminescent (PL) (quenching and coupling) effects, and AFM images for the [Ru(bpy)3]2+/Au@tiopronin system were determined in aqueous solutions of the gold nanoparticles (NPs) at pH 7.0. The most remarkable finding was that ECL measurements can display the nanoparticle-induced resonance energy transfer (NP-RET) effect. Its effectiveness was quantified through a coefficient, K (NP-RET)ECL , which measures how much an ECL reaction has been enhanced. Moreover, the NP-RET effect was also checked using PL measurements, in such a way that a coefficient, K (NP-RET)PL , was determined; both constants, K (NP-RET)ECL and K (NP-RET)PL being in close agreement. It is important to highlight the fact that the NP-RET effect is only displayed in diluted solutions in which there is no NPs self-aggregation. The existence of the NPs self-aggregation behavior is revealed through AFM measurements.

10.
Phys Chem Chem Phys ; 21(21): 11019-11032, 2019 Jun 07.
Article in English | MEDLINE | ID: mdl-31089595

ABSTRACT

The effect of the addition of low concentrations of an inner electrolyte on ds-DNA CT-DNA (calf thymus DNA) and ss-DNA conformational changes induced by small N-(2-mercaptopropionyl)glycine gold nanoparticles (AuNPs) is here studied in detail by using different spectroscopic and structural techniques. The high affinity of ss-DNA to AuNPs compared with ds-DNA is easily demonstrated by the results of competitive binding with SYBR Green I (SG). Additionally, it is proven that at 25.0 °C, AuNPs/ds-DNA and AuNPs/ss-DNA complexes undergo a transition from extended-coil to more compact structures when the AuNPs concentration (CAuNPs) is increased, which for the ds-DNA system is accompanied by partial denaturation. Particularly, for the AuNPs/ss-DNA system all of these techniques confirm that at a high CAuNPs, the compaction process is followed by a discrete transition to aggregation and an increase in structure size. A thorough analysis of the conformational changes described indicates that these processes are larger in low salt concentration and at high temperature. However, the most striking feature of this work is the abnormal melting temperature profiles (Tm) registered at high R = CAuNPs/CDNA ratios, which are remarkable and of interest for chemical sensing. At a suitable R ratio, which varies depending on CNaCl, a complex melting profile for the AuNPs/ds-DNA system was registered with two characteristic transitions: Tm,1 = 65.0 °C and Tm,2 = 95.0 °C. The highly sensitive atomic force microscopy technique performed at 25.0 °C and 65.0 °C also showed a different behaviour in both ss- and AuNPs/ds-DNA systems, which explains the characteristic melting curves. Specifically for the AuNPs/ss-DNA system, AFM at 25.0 °C revealed the formation of large-sized aggregates formed by AuNPs/ss-DNA compact structures linked by AuNPs. However, when both AuNPs/ds-DNA and AuNPs/ss-DNA complexes were incubated at 65.0 °C, the formation of highly stable ordered structures was always visualized at high R. Therefore, this shows that some key parameters for effective control of the formation of DNA/RNA-linked particles are: the selection of an optimal temperature below the ds-DNA melting point, an appropriate CAuNPs, and the addition of low CNaCl. The optimization of these parameters for each AuNPs/DNA system could improve biological sensing and DNA/RNA delivery.


Subject(s)
DNA/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Transition Temperature , Electrolytes/chemistry
11.
Acta Neurobiol Exp (Wars) ; 73(3): 338-53, 2013.
Article in English | MEDLINE | ID: mdl-24129483

ABSTRACT

The general organization of cholinergic and nitrergic elements in the central nervous system seems to be highly conserved among vertebrates, with the involvement of these neurotransmitter systems now well established in sensory, motor and cognitive processing. The goldfish is a widely used animal model in neuroanatomical, neurophysiological, and behavioral research. The purpose of this study was to examine pallial and subpallial cholinoceptive, cholinergic and nitrergic populations in the goldfish telencephalon by means of histochemical and immunohistochemical techniques in order to identify neurons containing acetylcholinesterase (AChE), choline acetyltransferase (ChAT), NADPH-diaphorase (NADPHd), and neuronal nitric oxide synthase (nNOS), and to relate their distribution to their putative functional significance. Regions containing AChE-labeled neurons represented terminal fields of cholinergic inputs as well as a widespread distribution of AChE-related enzymes; these regions also usually contained NADPHd-labeled neurons and often contained small numbers of nNOS-positive cells. However, the ventral subdivisions of the medial and lateral parts of the dorsal telencephalic area, and the ventral and lateral parts of the ventral telencephalic area, were devoid of nNOS-labeled cells. ChAT-positive neurons were found only in the lateral part of the ventral telencephalic area. ChAT- and nNOS-positive fibers exhibited a radial orientation, and were seen as thin axons with en-passant boutons. The distribution of these elements could help to elucidate the role of cholinergic and nitrergic neuronal networks in the goldfish telencephalon.


Subject(s)
Cholinergic Neurons/physiology , Nerve Net/physiology , Nitrergic Neurons/physiology , Telencephalon/cytology , Animals , Choline O-Acetyltransferase/metabolism , Goldfish , NADPH Dehydrogenase/metabolism , Nitric Oxide Synthase Type I/metabolism
12.
J Comp Neurol ; 521(4): 894-911, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-22886886

ABSTRACT

Fragile X syndrome (FXS), the most common form of inherited mental retardation, is caused by the loss of the Fmr1 gene product, fragile X mental retardation protein. Here we analyze the immunohistochemical expression of calcium-binding proteins in the dorsal thalamus of Fmr1 knockout mice of both sexes and compare it with that of wildtype littermates. The spatial distribution pattern of calbindin-immunoreactive cells in the dorsal thalamus was similar in wildtype and knockout mice but there was a notable reduction in calbindin-immunoreactive cells in midline/intralaminar/posterior dorsal thalamic nuclei of male Fmr1 knockout mice. We counted the number of calbindin-immunoreactive cells in 18 distinct nuclei of the dorsal thalamus. Knockout male mice showed a significant reduction in calbindin-immunoreactive cells (range: 36-67% lower), whereas female knockout mice did not show significant differences (in any dorsal thalamic nucleus) when compared with their wildtype littermates. No variation in the calretinin expression pattern was observed throughout the dorsal thalamus. The number of calretinin-immunoreactive cells was similar for all experimental groups as well. Parvalbumin immunoreactivity was restricted to fibers and neuropil in the analyzed dorsal thalamic nuclei, and presented no differences between genotypes. Midline/intralaminar/posterior dorsal thalamic nuclei are involved in forebrain circuits related to memory, nociception, social fear, and auditory sensory integration; therefore, we suggest that downregulation of calbindin protein expression in the dorsal thalamus of male knockout mice should be taken into account when analyzing behavioral studies in the mouse model of FXS.


Subject(s)
Fragile X Syndrome/metabolism , S100 Calcium Binding Protein G/metabolism , Sex Characteristics , Thalamus/metabolism , Animals , Blotting, Western , Calbindins , Disease Models, Animal , Female , Immunohistochemistry , Male , Mice , Mice, Knockout
13.
Mol Neurodegener ; 6: 72, 2011 Oct 13.
Article in English | MEDLINE | ID: mdl-21995845

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is characterized by dopaminergic neurodegeneration in the substantia nigra (SN). Transforming growth factor-ß1 (TGF-ß1) levels increase in patients with PD, although the effects of this increment remain unclear. We have examined the mesostriatal system in adult mice deficient in Smad3, a molecule involved in the intracellular TGF-ß1 signalling cascade. RESULTS: Striatal monoamine oxidase (MAO)-mediated dopamine (DA) catabolism to 3,4-dihydroxyphenylacetic acid (DOPAC) is strongly increased, promoting oxidative stress that is reflected by an increase in glutathione levels. Fewer astrocytes are detected in the ventral midbrain (VM) and striatal matrix, suggesting decreased trophic support to dopaminergic neurons. The SN of these mice has dopaminergic neuronal degeneration in its rostral portion, and the pro-survival Erk1/2 signalling is diminished in nigra dopaminergic neurons, not associated with alterations to p-JNK or p-p38. Furthermore, inclusions of α-synuclein are evident in selected brain areas, both in the perikaryon (SN and paralemniscal nucleus) or neurites (motor and cingulate cortices, striatum and spinal cord). Interestingly, these α-synuclein deposits are detected with ubiquitin and P(S129)-α-synuclein in a core/halo cellular distribution, which resemble those observed in human Lewy bodies (LB). CONCLUSIONS: Smad3 deficiency promotes strong catabolism of DA in the striatum (ST), decrease trophic and astrocytic support to dopaminergic neurons and may induce α-synuclein aggregation, which may be related to early parkinsonism. These data underline a role for Smad3 in α-synuclein and DA homeostasis, and suggest that modulatory molecules of this signalling pathway should be evaluated as possible neuroprotective agents.


Subject(s)
Dopamine/metabolism , Smad3 Protein/metabolism , alpha-Synuclein/metabolism , Animals , Dopaminergic Neurons/cytology , Dopaminergic Neurons/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxidative Stress , Parkinson Disease/pathology , Parkinson Disease/physiopathology , Signal Transduction/physiology , Smad3 Protein/genetics , Substantia Nigra/cytology , Substantia Nigra/metabolism , Substantia Nigra/pathology , Transforming Growth Factor beta1/metabolism , Ubiquitin/metabolism
14.
J Chem Neuroanat ; 37(1): 1-17, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18804528

ABSTRACT

This work investigates the nitrergic and cholinergic systems in the brain and spinal cord of the goldfish (Carassius auratus). We studied the immunohistochemical localization of antibodies against the neuronal nitric oxide synthase (nNOS) and choline acetyltransferase (ChAT) by bright-field and confocal microscopy. Nitrergic and cholinergic cells were segregated within the telencephalon, in both dorsal and ventral areas, and co-distributed in some nuclei of the diencephalon, mesencephalon, rhombencephalon, and spinal cord. Double-labeling experiments revealed nNOS/ChAT-positive cells in (1) the diencephalon: the preoptic and suprachiasmatic nuclei, the habenula, the dorsal thalamus, and the nucleus of the medial longitudinal fasciculus; (2) the mesencephalon: the optic tectum, the mesencephalic portion of the trigeminal nucleus, the oculomotor and trochlear nuclei, and the Edinger-Westphal nucleus; and (3) the rhombencephalon: the secondary gustatory nucleus, the nucleus isthmi, the lateral lemniscus nucleus, the cerebellum, the reticular formation, different nuclei of the octaval column, the motor zone of the vagal lobe, and the trigeminal, facial, abducens, glosso-pharyngeal, vagal, and hypobranchial motor nuclei. Double-labeled cells were also observed in the spinal motor column. The percentage of double-labeled cells was different in each studied nucleus, indicating a selective distribution pattern. Because double-labeled cells were more abundant in those nuclei involved with sensory and motor physiological processes, we suggest the involvement of both nitric oxide and acetylcholine in these neural functions in fish.


Subject(s)
Brain/enzymology , Choline O-Acetyltransferase/metabolism , Goldfish/metabolism , Nitric Oxide Synthase Type I/metabolism , Animals , Brain/anatomy & histology , Female , Immunohistochemistry , Male , Rats , Spinal Cord/enzymology
15.
J Chem Neuroanat ; 35(1): 12-32, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17616449

ABSTRACT

The nitrergic system has been inferred from cells positive to nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd) histochemistry and/or to the neuronal isoform of nitric oxide synthase (nNOS) immunohistochemistry in different species of vertebrates. The aim of the present work was to systematically study the distribution of cell producing nitric oxide in the goldfish (Carassius auratus) brain. To reach this goal, we firstly studied co-localization for NADPHd and nNOS techniques and demonstrated an extensive double labeling. Then, we studied the distribution through the brain by the two separate methods and found labeled cells widely distributed in brain and spinal cord. In the telencephalon, such cells were in both dorsal and ventral areas. In the diencephalon, the cells were found in some nuclei of the preoptic area and hypothalamus, habenula, pretectum, and dorsal and ventral thalamic regions. In the midbrain, cells were observed in the optic tectum, torus longitudinalis, and tegmental nuclei. In the rhombencephalon, cells were found in the cerebellum, the reticular formation, the locus coeruleus, the raphe nuclei, and the nuclei of the cranial nerves. Labeled cells were also observed in the gray area of the spinal cord. Cognizing that a direct comparison of the present results with those reported in other vertebrates is not clear-cut because of homologies; we conclude that the nitrergic system is roughly similar from fish to mammals.


Subject(s)
Central Nervous System/enzymology , Goldfish/metabolism , NADPH Dehydrogenase/metabolism , Nitrergic Neurons/enzymology , Nitric Oxide Synthase/metabolism , Nitric Oxide/biosynthesis , Animals , Biological Evolution , Brain/anatomy & histology , Brain/enzymology , Brain Mapping , Central Nervous System/anatomy & histology , Female , Goldfish/anatomy & histology , Histocytochemistry , Immunohistochemistry , Male , Nitrergic Neurons/cytology , Species Specificity , Spinal Cord/anatomy & histology , Spinal Cord/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...