Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Renal Physiol ; 297(2): F350-61, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19493963

ABSTRACT

Dietary potassium (K) deficiency is accompanied by phosphaturia and decreased renal brush border membrane (BBM) vesicle sodium (Na)-dependent phosphate (P(i)) transport activity. Our laboratory previously showed that K deficiency in rats leads to increased abundance in the proximal tubule BBM of the apical Na-P(i) cotransporter NaPi-IIa, but that the activity, diffusion, and clustering of NaPi-IIa could be modulated by the altered lipid composition of the K-deficient BBM (Zajicek HK, Wang H, Puttaparthi K, Halaihel N, Markovich D, Shayman J, Beliveau R, Wilson P, Rogers T, Levi M. Kidney Int 60: 694-704, 2001; Inoue M, Digman MA, Cheng M, Breusegem SY, Halaihel N, Sorribas V, Mantulin WW, Gratton E, Barry NP, Levi M. J Biol Chem 279: 49160-49171, 2004). Here we investigated the role of the renal Na-P(i) cotransporters NaPi-IIc and PiT-2 in K deficiency. Using Western blotting, immunofluorescence, and quantitative real-time PCR, we found that, in rats and in mice, K deficiency is associated with a dramatic decrease in the NaPi-IIc protein abundance in proximal tubular BBM and in NaPi-IIc mRNA. In addition, we documented the presence of a third Na-coupled P(i) transporter in the renal BBM, PiT-2, whose abundance is also decreased by dietary K deficiency in rats and in mice. Finally, electron microscopy showed subcellular redistribution of NaPi-IIc in K deficiency: in control rats, NaPi-IIc immunolabel was primarily in BBM microvilli, whereas, in K-deficient rats, NaPi-IIc BBM label was reduced, and immunolabel was prevalent in cytoplasmic vesicles. In summary, our results demonstrate that decreases in BBM abundance of the phosphate transporter NaPi-IIc and also PiT-2 might contribute to the phosphaturia of dietary K deficiency, and that the three renal BBM phosphate transporters characterized so far can be differentially regulated by dietary perturbations.


Subject(s)
Kidney/metabolism , Phosphorus, Dietary/metabolism , Potassium Deficiency/metabolism , Sodium-Phosphate Cotransporter Proteins, Type III/metabolism , Sodium-Phosphate Cotransporter Proteins, Type IIa/metabolism , Sodium-Phosphate Cotransporter Proteins, Type IIc/metabolism , Animals , Biological Transport , Cell Membrane/metabolism , Cytoplasmic Vesicles/metabolism , Disease Models, Animal , Gene Expression Regulation , Hypophosphatemia/metabolism , Kidney/ultrastructure , Male , Mice , Mice, Inbred C57BL , Microvilli/metabolism , Phosphorus, Dietary/blood , Phosphorus, Dietary/urine , Potassium Deficiency/genetics , Protein Transport , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Sodium-Phosphate Cotransporter Proteins, Type III/genetics , Sodium-Phosphate Cotransporter Proteins, Type IIa/genetics , Sodium-Phosphate Cotransporter Proteins, Type IIc/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...