Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38083456

ABSTRACT

Cardiorespiratory interaction is related to the heart rate variability (HRV) synchronized with respiration. These metrics help to comprehend the autonomic nervous system (ANS) functionality in cardiovascular mechanisms. In this work, we aim to study the HRV in healthy subjects aged 18-24 years during the breathing techniques based on deep breaths followed by apnoeas, developed by Wim Hof (WHM). The attributes of all participates have been treated as a group and therefore, separated by gender. A total of 11 intervals have been distinguished: starting of basal respiration (SRI = 1), controlled deep breaths (CDB = 3), long expiratory apnoea (LEA = 3), short inspiratory apnoea (SIA = 3) and ending with basal respiration again (FRI = 1). To strengthen the HRV knowledge extraction from these scenarios, time and frequency analysis is conducted. In general, breathing and apnoea intervals presented significant statistically differences (p < 0.05), heart rate (HR) mean between SRI and FRI (p < 0.001), RR variability of LEA intervals (p < 0.01), root mean square of RR intervals during CDB (p < 0.05), maximum high frequency (HF) peak amplitude between SRI and FRI (p = 0.016), and low frequency (LF) area for LEA intervals (p < 0.001). When performing the frequency analysis, it has been observed that the sympathetic nervous system (SNS) has a higher contribution in the apnoea intervals. In conclusion, the WHM method implementation seems to involve a decrease in the HR. Specific breathing techniques could help to control the body in different conditions.Clinical Relevance- The WHM seems to imply a decrease on HR. Furthermore, after the implementation of the WHM, women presented higher HRV.


Subject(s)
Apnea , Respiration , Humans , Female , Heart Rate/physiology , Healthy Volunteers , Heart
2.
Sleep ; 46(8)2023 08 14.
Article in English | MEDLINE | ID: mdl-37336476

ABSTRACT

STUDY OBJECTIVES: We aimed to characterize the cerebral hemodynamic response to obstructive sleep apnea/hypopnea events, and evaluate their association to polysomnographic parameters. The characterization of the cerebral hemodynamics in obstructive sleep apnea (OSA) may add complementary information to further the understanding of the severity of the syndrome beyond the conventional polysomnography. METHODS: Severe OSA patients were studied during night sleep while monitored by polysomnography. Transcranial, bed-side diffuse correlation spectroscopy (DCS) and frequency-domain near-infrared diffuse correlation spectroscopy (NIRS-DOS) were used to follow microvascular cerebral hemodynamics in the frontal lobes of the cerebral cortex. Changes in cerebral blood flow (CBF), total hemoglobin concentration (THC), and cerebral blood oxygen saturation (StO2) were analyzed. RESULTS: We considered 3283 obstructive apnea/hypopnea events from sixteen OSA patients (Age (median, interquartile range) 57 (52-64.5); females 25%; AHI (apnea-hypopnea index) 84.4 (76.1-93.7)). A biphasic response (maximum/minimum followed by a minimum/maximum) was observed for each cerebral hemodynamic variable (CBF, THC, StO2), heart rate and peripheral arterial oxygen saturation (SpO2). Changes of the StO2 followed the dynamics of the SpO2, and were out of phase from the THC and CBF. Longer events were associated with larger CBF changes, faster responses and slower recoveries. Moreover, the extrema of the response to obstructive hypopneas were lower compared to apneas (p < .001). CONCLUSIONS: Obstructive apneas/hypopneas cause profound, periodic changes in cerebral hemodynamics, including periods of hyper- and hypo-perfusion and intermittent cerebral hypoxia. The duration of the events is a strong determinant of the cerebral hemodynamic response, which is more pronounced in apnea than hypopnea events.


Subject(s)
Airway Obstruction , Sleep Apnea Syndromes , Sleep Apnea, Obstructive , Female , Humans , Hemodynamics , Spectroscopy, Near-Infrared
3.
Neurophotonics ; 5(4): 045003, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30681667

ABSTRACT

Obstructive apnea causes periodic changes in cerebral and systemic hemodynamics, which may contribute to the increased risk of cerebrovascular disease of patients with obstructive sleep apnea (OSA) syndrome. The improved understanding of the consequences of an apneic event on the brain perfusion may improve our knowledge of these consequences and then allow for the development of preventive strategies. Our aim was to characterize the typical microvascular, cortical cerebral blood flow (CBF) changes in an OSA population during an apneic event. Sixteen patients (age 58 ± 8 years , 75% male) with a high risk of severe OSA were measured with a polysomnography device and with diffuse correlation spectroscopy (DCS) during one night of sleep with 1365 obstructive apneic events detected. All patients were later confirmed to suffer from severe OSA syndrome with a mean of 83 ± 15 apneas and hypopneas per hour. DCS has been shown to be able to characterize the microvascular CBF response to each event with a sufficient contrast-to-noise ratio to reveal its dynamics. It has also revealed that an apnea causes a peak increase of microvascular CBF ( 30 ± 17 % ) at the end of the event followed by a drop ( - 20 ± 12 % ) similar to what was observed in macrovascular CBF velocity of the middle cerebral artery. This study paves the way for the utilization of DCS for further studies on these populations.

SELECTION OF CITATIONS
SEARCH DETAIL
...