Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Publication year range
1.
Front Neurosci ; 16: 1081010, 2022.
Article in English | MEDLINE | ID: mdl-36570823

ABSTRACT

Background: Shank3 is a scaffolding protein essential for the organization and function of the glutamatergic postsynapse. Monogenic mutations in SHANK3 gene are among the leading genetic causes of Autism Spectrum Disorders (ASD). The multiplicity of Shank3 isoforms seems to generate as much functional diversity and yet, there are no tools to study endogenous Shank3 proteins in an isoform-specific manner. Methods: In this study, we created a novel transgenic mouse line, the Shank3Venus/Venus knock in mouse, which allows to monitor the endogenous expression of the major Shank3 isoform in the brain, the full-length Shank3a isoform. Results: We show that the endogenous Venus-Shank3a protein is localized in spines and is mainly expressed in the striatum, hippocampus and cortex of the developing and adult brain. We show that Shank3Venus/+ and Shank3Venus/Venus mice have no behavioral deficiency. We further crossed Shank3Venus/Venus mice with Shank3ΔC/ΔC mice, a model of ASD, to track the Venus-tagged wild-type copy of Shank3a in physiological (Shank3Venus/+) and pathological (Shank3Venus/ΔC) conditions. We report a developmental delay in brain expression of the Venus-Shank3a isoform in Shank3Venus/ΔC mice, compared to Shank3Venus/+ control mice. Conclusion: Altogether, our results show that the Shank3Venus/Venus mouse line is a powerful tool to study endogenous Shank3a expression, in physiological conditions and in ASD.

2.
J Neuroinflammation ; 19(1): 234, 2022 Sep 24.
Article in English | MEDLINE | ID: mdl-36153535

ABSTRACT

BACKGROUND: Research in recent years firmly established that microglial cells play an important role in the pathogenesis of Alzheimer's disease (AD). In parallel, a series of studies showed that, under both homeostatic and pathological conditions, microglia are a heterogeneous cell population. In AD, amyloid-ß (Aß) plaque-associated microglia (PAM) display a clearly distinct phenotype compared to plaque-distant microglia (PCM), suggesting that these two microglia subtypes likely differently contribute to disease progression. So far, molecular characterization of PAM was performed indirectly using single cell RNA sequencing (scRNA-seq) approaches or based on markers that are supposedly up-regulated in this microglia subpopulation. METHODS: In this study based on a well-characterized AD mouse model, we combined cell-specific laser capture microdissection and RNA-seq analysis to i) identify, without preconceived notions of the molecular and/or functional changes that would affect these cells, the genes and gene networks that are dysregulated in PAM or PCM at three critical stages of the disease, and ii) to investigate the potential contribution of both plaque-associated and plaque-distant microglia. RESULTS: First, we established that our approach allows selective isolation of microglia, while preserving spatial information and preventing transcriptome changes induced by classical purification approaches. Then, we identified, in PAM and PCM subpopulations, networks of co-deregulated genes and analyzed their potential functional roles in AD. Finally, we investigated the dynamics of microglia transcriptomic remodeling at early, intermediate and late stages of the disease and validated select findings in postmortem human AD brain. CONCLUSIONS: Our comprehensive study provides useful transcriptomic information regarding the respective contribution of PAM and PCM across the Aß pathology progression. It highlights specific pathways that would require further study to decipher their roles across disease progression. It demonstrates that the proximity of microglia to Aß-plaques dramatically alters the microglial transcriptome and reveals that these changes can have both positive and negative impacts on the surrounding cells. These opposing effects may be driven by local microglia heterogeneity also demonstrated by this study. Our approach leads to molecularly define the less well studied plaque-distant microglia. We show that plaque-distant microglia are not bystanders of the disease, although the transcriptomic changes are far less striking compared to what is observed in plaque-associated microglia. In particular, our results suggest they may be involved in Aß oligomer detection and in Aß-plaque initiation, with increased contribution as the disease progresses.


Subject(s)
Alzheimer Disease , Microglia , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Disease Models, Animal , Disease Progression , Humans , Mice , Mice, Transgenic , Microglia/metabolism , Plaque, Amyloid/pathology , Transcriptome
3.
Cells ; 10(12)2021 11 27.
Article in English | MEDLINE | ID: mdl-34943841

ABSTRACT

Ependymal cells reside in the adult spinal cord and display stem cell properties in vitro. They proliferate after spinal cord injury and produce neurons in lower vertebrates but predominantly astrocytes in mammals. The mechanisms underlying this glial-biased differentiation remain ill-defined. We addressed this issue by generating a molecular resource through RNA profiling of ependymal cells before and after injury. We found that these cells activate STAT3 and ERK/MAPK signaling post injury and downregulate cilia-associated genes and FOXJ1, a central transcription factor in ciliogenesis. Conversely, they upregulate 510 genes, seven of them more than 20-fold, namely Crym, Ecm1, Ifi202b, Nupr1, Rbp1, Thbs2 and Osmr-the receptor for oncostatin, a microglia-specific cytokine which too is strongly upregulated after injury. We studied the regulation and role of Osmr using neurospheres derived from the adult spinal cord. We found that oncostatin induced strong Osmr and p-STAT3 expression in these cells which is associated with reduction of proliferation and promotion of astrocytic versus oligodendrocytic differentiation. Microglial cells are apposed to ependymal cells in vivo and co-culture experiments showed that these cells upregulate Osmr in neurosphere cultures. Collectively, these results support the notion that microglial cells and Osmr/Oncostatin pathway may regulate the astrocytic fate of ependymal cells in spinal cord injury.


Subject(s)
Cell Lineage , Ependyma/metabolism , Gene Expression Profiling , Gene Expression Regulation , Oncostatin M/metabolism , RNA/genetics , Spinal Cord Injuries/genetics , Stem Cells/pathology , Animals , Cell Differentiation/genetics , Cell Proliferation/genetics , Cilia/genetics , Down-Regulation/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Mice , Mice, Inbred C57BL , Microglia/metabolism , Oncostatin M Receptor beta Subunit , RNA/metabolism , Spheroids, Cellular/metabolism , Spinal Cord/pathology , Up-Regulation/genetics
4.
Mol Psychiatry ; 26(12): 7596-7609, 2021 12.
Article in English | MEDLINE | ID: mdl-34331007

ABSTRACT

Shank3 monogenic mutations lead to autism spectrum disorders (ASD). Shank3 is part of the glutamate receptosome that physically links ionotropic NMDA receptors to metabotropic mGlu5 receptors through interactions with scaffolding proteins PSD95-GKAP-Shank3-Homer. A main physiological function of the glutamate receptosome is to control NMDA synaptic function that is required for plasticity induction. Intact glutamate receptosome supports glutamate receptors activation and plasticity induction, while glutamate receptosome disruption blocks receptors activity, preventing the induction of subsequent plasticity. Despite possible impact on metaplasticity and cognitive behaviors, scaffold interaction dynamics and their consequences are poorly defined. Here, we used mGlu5-Homer interaction as a biosensor of glutamate receptosome integrity to report changes in synapse availability for plasticity induction. Combining BRET imaging and electrophysiology, we show that a transient neuronal depolarization inducing NMDA-dependent plasticity disrupts glutamate receptosome in a long-lasting manner at synapses and activates signaling pathways required for the expression of the initiated neuronal plasticity, such as ERK and mTOR pathways. Glutamate receptosome disruption also decreases the NMDA/AMPA ratio, freezing the sensitivity of the synapse to subsequent changes of neuronal activity. These data show the importance of a fine-tuning of protein-protein interactions within glutamate receptosome, driven by changes of neuronal activity, to control plasticity. In a mouse model of ASD, a truncated mutant form of Shank3 prevents the integrity of the glutamate receptosome. These mice display altered plasticity, anxiety-like, and stereotyped behaviors. Interestingly, repairing the integrity of glutamate receptosome and its sensitivity to the neuronal activity rescued synaptic transmission, plasticity, and some behavioral traits of Shank3∆C mice. Altogether, our findings characterize mechanisms by which Shank3 mutations cause ASD and highlight scaffold dynamics as new therapeutic target.


Subject(s)
Autistic Disorder , Microfilament Proteins , Nerve Tissue Proteins , Animals , Autistic Disorder/genetics , Autistic Disorder/metabolism , Disease Models, Animal , Endosomes/metabolism , Glutamic Acid/metabolism , Mice , Microfilament Proteins/metabolism , Nerve Tissue Proteins/metabolism , Synapses/metabolism
5.
Med Sci (Paris) ; 37(1): 59-67, 2021 Jan.
Article in French | MEDLINE | ID: mdl-33492220

ABSTRACT

Brain function relies on complex interactions between neurons and different types of glial cells, such as astrocytes, microglia and oligodendrocytes. The relatively young field of "gliobiology" is thriving. Thanks to various technical innovations, it is now possible to address challenging biological questions on glial cells and unravel their multiple roles in brain function and dysfunction.


TITLE: De nouvelles techniques pour dévoiler le rôle des cellules gliales du cerveau. ABSTRACT: L'exécution des fonctions cérébrales requiert des interactions optimales entre les neurones et les différents types de cellules gliales (astrocytes, microglies et oligodendrocytes). Le domaine de la gliobiologie, qui s'intéresse aux cellules gliales, est en pleine expansion. Les innovations techniques permettent désormais d'aborder des questions biologiques complexes quant aux rôles de ces cellules dans le fonctionnement physiologique et pathologique du cerveau. Dans cette synthèse, nous décrivons comment certaines de ces avancées techniques nous ont permis d'en apprendre davantage sur les origines et les rôles fonctionnels des cellules gliales. Nous illustrons également comment ces techniques et les découvertes qui en ont découlé, peuvent être transposées en clinique et pourraient, dans un futur proche, offrir des nouvelles perspectives thérapeutiques.


Subject(s)
Brain/cytology , Glycomics/trends , Neuroglia/physiology , Animals , Brain/physiology , Brain Chemistry , Glycomics/methods , Humans , Inventions , Metabolomics/methods , Metabolomics/trends
6.
Brain Behav Immun ; 91: 404-417, 2021 01.
Article in English | MEDLINE | ID: mdl-33190798

ABSTRACT

Microglia, the resident immune cells of the brain, have recently emerged as key players in Alzheimer Disease (AD) pathogenesis, but their roles in AD remain largely elusive and require further investigation. Microglia functions are readily altered when isolated from their brain environment, and microglia reporter mice thus represent valuable tools to study the contribution of these cells to neurodegenerative diseases such as AD. The CX3CR1+/eGFP mice is one of the most popular microglia reporter mice, and has been used in numerous studies to investigate in vivo microglial functions, including in the context of AD research. However, until now, the impact of CX3CR1 haplodeficiency on the typical features of Alzheimer Disease has not been studied in depth. To fill this gap, we generated APPswe/PSEN1dE9:CX3CR1+/eGFP mice and analyzed these mice for Alzheimer's like pathology and neuroinflammation hallmarks. More specifically, using robust multifactorial statistical and multivariate analyses, we investigated the impact of CX3CR1 deficiency in both males and females, at three typical stages of the pathology progression: at early stage when Amyloid-ß (Aß) deposition just starts, at intermediate stage during Aß accumulation phase and at more advanced stages when Aß plaque number stabilizes. We found that CX3CR1 haplodeficiency had little impact on the progression of the pathology in the APPswe/PSEN1dE9 model and demonstrated that the APPswe/PSEN1dE9:CX3CR1+/eGFP line is a relevant and useful model to study the role of microglia in Alzheimer Disease. In addition, although Aß plaques density is higher in females compared to age-matched males, we show that their glial reaction, inflammation status and memory deficits are not different.


Subject(s)
Alzheimer Disease , CX3C Chemokine Receptor 1 , Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Brain/metabolism , CX3C Chemokine Receptor 1/genetics , Disease Models, Animal , Disease Progression , Female , Male , Mice , Mice, Transgenic , Microglia/metabolism , Plaque, Amyloid
7.
New Phytol ; 198(3): 899-915, 2013 May.
Article in English | MEDLINE | ID: mdl-23442088

ABSTRACT

Xylan is a major structural component of plant cell wall and the second most abundant plant polysaccharide in nature. Here, by combining genomic and functional analyses, we provide a comprehensive picture of xylan utilization by Xanthomonas campestris pv campestris (Xcc) and highlight its role in the adaptation of this epiphytic phytopathogen to the phyllosphere. The xylanolytic activity of Xcc depends on xylan-deconstruction enzymes but also on transporters, including two TonB-dependent outer membrane transporters (TBDTs) which belong to operons necessary for efficient growth in the presence of xylo-oligosaccharides and for optimal survival on plant leaves. Genes of this xylan utilization system are specifically induced by xylo-oligosaccharides and repressed by a LacI-family regulator named XylR. Part of the xylanolytic machinery of Xcc, including TBDT genes, displays a high degree of conservation with the xylose-regulon of the oligotrophic aquatic bacterium Caulobacter crescentus. Moreover, it shares common features, including the presence of TBDTs, with the xylan utilization systems of Bacteroides ovatus and Prevotella bryantii, two gut symbionts. These similarities and our results support an important role for TBDTs and xylan utilization systems for bacterial adaptation in the phyllosphere, oligotrophic environments and animal guts.


Subject(s)
Bacterial Outer Membrane Proteins/genetics , Gene Expression Regulation, Bacterial , Xanthomonas campestris/genetics , Xanthomonas campestris/metabolism , Xylans/metabolism , Adaptation, Physiological , Animals , Bacterial Outer Membrane Proteins/metabolism , Bacteroides/metabolism , Brassica/microbiology , Caulobacter crescentus/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mutation , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Operon , Phaseolus/microbiology , Symbiosis , Xanthomonas campestris/growth & development , Xanthomonas campestris/pathogenicity , Xylose/metabolism , Xylosidases/genetics , Xylosidases/metabolism
8.
Plant Cell ; 24(7): 3119-34, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22805434

ABSTRACT

The plant cuticle consists of cutin, a polyester of glycerol, hydroxyl, and epoxy fatty acids, covered and filled by waxes. While the biosynthesis of cutin building blocks is well documented, the mechanisms underlining their extracellular deposition remain unknown. Among the proteins extracted from dewaxed tomato (Solanum lycopersicum) peels, we identified GDSL1, a member of the GDSL esterase/acylhydrolase family of plant proteins. GDSL1 is strongly expressed in the epidermis of growing fruit. In GDSL1-silenced tomato lines, we observed a significant reduction in fruit cuticle thickness and a decrease in cutin monomer content proportional to the level of GDSL1 silencing. A significant decrease of wax load was observed only for cuticles of the severely silenced transgenic line. Fourier transform infrared (FTIR) analysis of isolated cutins revealed a reduction in cutin density in silenced lines. Indeed, FTIR-attenuated total reflectance spectroscopy and atomic force microscopy imaging showed that drastic GDSL1 silencing leads to a reduction in ester bond cross-links and to the appearance of nanopores in tomato cutins. Furthermore, immunolabeling experiments attested that GDSL1 is essentially entrapped in the cuticle proper and cuticle layer. These results suggest that GDSL1 is specifically involved in the extracellular deposition of the cutin polyester in the tomato fruit cuticle.


Subject(s)
Carboxylic Ester Hydrolases/metabolism , Fruit/enzymology , Membrane Lipids/metabolism , Solanum lycopersicum/enzymology , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/isolation & purification , Down-Regulation/genetics , Fruit/chemistry , Fruit/genetics , Fruit/ultrastructure , Gene Expression Regulation, Plant/genetics , Gene Silencing , Solanum lycopersicum/chemistry , Solanum lycopersicum/genetics , Solanum lycopersicum/ultrastructure , Membrane Lipids/chemistry , Microscopy, Atomic Force , Plant Epidermis/chemistry , Plant Epidermis/enzymology , Plant Epidermis/genetics , Plant Epidermis/ultrastructure , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Proteomics , RNA Interference , Waxes/chemistry , Waxes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...