Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage ; 199: 289-303, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31141736

ABSTRACT

Inhomogeneous Magnetization Transfer (ihMT) is a development from the MT MRI technique. IhMT can be considered as a dipolar order relaxation time (T1D) weighted imaging modality whose signal has shown an enhanced selectivity for myelin-rich structures. However, a formal validation of the ihMT sensitivity relative to a gold standard myelin density measurement has not yet been reported. To address this need, we compared ihMT MRI with green fluorescence protein (GFP) microscopy, in a study performed on genetically-modified plp-GFP mice, considered as a reference technique for myelin-content assessment. Various ihMT protocols consisting of variable T1D-filtering and radiofrequency power temporal distributions, were used for comparison with fluorescence microscopy. Strong and significant linear relationships (r2 (0.87-0.96), p < 0.0001) were found between GFP and ihMT ratio signals across brain regions for all tested protocol variants. Conventional MT ratios showed weaker correlations (r2 (0.24-0.78), p ≤ 0.02) and a much larger signal fraction unrelated to myelin, hence corresponding to a much lower specificity for myelin. T1D-filtering reduced the ihMT signal fraction not attributed to myelin by almost twofold relative to zero filtering suggesting that at least half of the unrelated signal has a substantially shorter T1D than myelin. Overall, these results strongly support the sensitivity of ihMT to myelin content.


Subject(s)
Gray Matter/diagnostic imaging , Magnetic Resonance Imaging/standards , Microscopy, Fluorescence/standards , Myelin Sheath , White Matter/diagnostic imaging , Animals , Data Interpretation, Statistical , Magnetic Resonance Imaging/methods , Mice , Mice, Inbred C57BL , Sensitivity and Specificity
2.
J Magn Reson ; 296: 60-71, 2018 11.
Article in English | MEDLINE | ID: mdl-30212729

ABSTRACT

Intense off-resonant RF irradiation can lead to saturation of the macromolecular pool magnetization and enhance bound pool dipolar order responsible for the inhomogeneous magnetization transfer (ihMT) effect, but the intensity of RF power in human imaging studies is limited by safety constraints on RF heating. High RF intensities can still be achieved if applied in short pulses with low duty-cycle. Here we investigate the benefits of low duty-cycle irradiation for MT and ihMT studies with both theoretical and experimental methods. Solutions for pulsed irradiation of a two-pool model including dipolar order effects were implemented. Experiments were conducted at 3 T in the brain and through the calf of healthy human subjects. 2D echo planar images were acquired following a preparation of RF irradiation with a 2 s train of 5 ms pulses repeated from between 10 to 100 ms for duty-cycles (DCs) of 50% to 5%, and at varying offset frequencies, and time averaged RF powers. MT and ihMT data were measured in regions of interest within gray matter, white matter and muscle, and fit to the model. RF irradiation effects on signal intensity were reduced at 5% relative to 50% DCs. This reduced RF effect was much larger for single than dual frequency irradiation. 5% DC irradiation reduced single and dual frequency MT ratios but increased ihMT ratios up to 3 fold in brain tissues. Muscle ihMT increased by an even larger factor, depending on the frequency and applied power. The model predicted these changes with duty-cycle. The model fit the data well and constrained model parameters. Low duty-cycle pulsed irradiation reduces MT effects and markedly increases dipolar order effects. This approach is an attractive method to enhance ihMT signal-to-noise ratio and demonstrates a measurable ihMT effect in muscle tissue at 3 T under acceptable specific absorption rates. The effects of duty-cycle changes demonstrated in a separate MT/ihMT preparation provide a route for new applications in magnetization-prepared MRI sequences.

3.
NMR Biomed ; 30(6)2017 Jun.
Article in English | MEDLINE | ID: mdl-28195663

ABSTRACT

A pulsed inhomogeneous magnetization transfer (ihMT)-prepared fast imaging sequence was implemented at 11.75 T for preclinical studies on mouse central nervous system. A strategy based on filtering the ihMT signal originating from short dipolar relaxation time (T1D ) components is proposed. It involves increasing the repetition time of consecutive radiofrequency (RF) pulses of the dual saturation and allows improved signal specificity for long T1D myelinated structures. Furthermore, frequency offset, power and timing saturation parameters were adjusted to optimize the ihMT sensitivity. The optimization of the ihMT sensitivity, whilst preserving the strong specificity for the long T1D component of myelinated tissues, allowed measurements of ihMT ratios on the order of 4-5% in white matter (WM), 2.5% in gray matter (GM) and 1-1.3% in muscle. This led to high relative ihMT contrasts between myelinated tissues and others (~3-4 between WM and muscle, and ≥2 between GM and muscle). Conversely, higher ihMT ratios (~6-7% in WM) could be obtained using minimal T1D filtering achieved with short saturation pulse repetition time or cosine-modulated pulses for the dual-frequency saturation. This study represents a first stage in the process of validating ihMT as a myelin biomarker by providing optimized ihMT preclinical sequences, directly transposable and applicable to other preclinical magnetic fields and scanners. Finally, ihMT ratios measured in various central nervous system areas are provided for future reference.


Subject(s)
Contrast Media/chemistry , Magnetic Resonance Imaging/methods , Animals , Central Nervous System/anatomy & histology , Female , Image Processing, Computer-Assisted , Mice, Inbred C57BL , Time Factors
4.
J Magn Reson ; 260: 67-76, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26408956

ABSTRACT

Comparison of off-resonance saturation with single and dual frequency irradiation indicates a contribution of inhomogeneously broadened lines to magnetization transfer in tissues. This inhomogeneous magnetization transfer (ihMT) phenomenon can be exploited to produce images that highlight tissues containing myelin, in vivo. Here, a model for ihMT is described that includes dipolar order effects from magnetization associated with motion-restricted macromolecules. In this model, equal irradiation at positive and negative frequency offsets eliminates dipolar order and achieves greater saturation than irradiation at a single offset frequency using the same power. Fitting of mouse and human volunteer brain data at different irradiation powers and offset frequencies was performed to assess the relevance of the model and approximate tissue parameters. A key parameter in determining ihMT signal was found to be the relaxation time T1D associated with the dipolar order reservoir and the fraction f of the semi-solid, bound magnetization that possessed a nonzero T1D. Indeed, better fits of myelinated tissue were achieved when assuming f≠1. From such fits, estimated T1Ds of mice in the white matter, (34±14) ms, were much longer than in muscle, T1D=(1±1) ms and the average f from white matter volunteer data was 2.2 times greater than that in grey matter. The combination of f and longer T1Ds was primarily responsible for the much higher ihMT in myelinated tissues, and provided explanation for the species variation. This dipolar order ihMT model should help guide future research, pulse sequence optimization, and clinical applications.


Subject(s)
Magnetic Resonance Imaging/methods , Adult , Algorithms , Animals , Brain/anatomy & histology , Computer Simulation , Female , Gray Matter/anatomy & histology , Humans , Image Processing, Computer-Assisted , Macromolecular Substances/chemistry , Male , Mice , Mice, Inbred C57BL , Models, Neurological , Muscle, Skeletal/anatomy & histology , Myelin Sheath/ultrastructure , Species Specificity , White Matter/anatomy & histology
5.
Contrast Media Mol Imaging ; 7(4): 411-7, 2012.
Article in English | MEDLINE | ID: mdl-22649047

ABSTRACT

Iron oxide nanoparticles (IONPs) are widely used as MR contrast agents because of their strong magnetic properties and broad range of applications. The contrast induced by IONPs typically depends on concentration, water accessibility, particle size and heterogeneity of IONP distribution within the microenvironment. Although the latter could be a tool to assess local physiological effects at the molecular level, it renders IONP quantification from relaxation measurements challenging. This study aims to quantify IONP concentration using susceptibility measurements. In addition, further analysis of relaxation data is proposed to extract quantitative information about the IONP spatial distribution. Mesenchymal stem cells were labeled with IONPs and the IONP concentration measured by mass spectroscopy. MR relaxation parameters (T(1), T(2), T(2)*) as well as magnetic susceptibility of cylindrical samples containing serial dilutions of mixtures of free and cell-internalized IONPs were measured and correlated with IONP concentration. Unlike relaxation data, magnetic susceptibility was independent of whether IONPs were free or internalized, making it an excellent candidate for IONP quantification. Using IONP concentration derived from mass spectroscopy and measured relaxation times, free and internalized IONP fractions were accurately calculated. Magnetic susceptibility was shown to be a robust technique to measure IONP concentration in this preliminary study. Novel imaging-based susceptibility mapping techniques could prove to be valuable tools to quantify IONP concentration directly by MRI, for samples of arbitrary shape. Combined with relaxation time mapping techniques, especially T(2) and T(2)*, this could be an efficient way to measure both IONP concentration and the internalized IONP fraction in vivo using MRI, to gain insight into tissue function and molecular imaging paradigms.


Subject(s)
Endocytosis , Ferric Compounds/metabolism , Magnetic Resonance Imaging/methods , Nanoparticles/chemistry , Stem Cells/cytology , Stem Cells/metabolism , Endometrium/cytology , Female , Humans , Magnetics , Regeneration , Staining and Labeling , Subcellular Fractions/metabolism
6.
Magn Reson Med ; 65(6): 1649-60, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21305596

ABSTRACT

Iron oxide nanoparticles (IONPs) are used in various MRI applications as negative contrast agents. A major challenge is to distinguish regions of signal void due to IONPs from those due to low signal tissues or susceptibility artifacts. To overcome this limitation, several positive contrast strategies have been proposed. Relying on IONP T(1) shortening effects to generate positive contrast is a particularly appealing strategy because it should provide additional specificity when associated with the usual negative contrast from effective transverse relaxation time (T(2)*) effects. In this article, ultrashort echo time imaging is shown to be a powerful technique which can take full advantage of both contrast mechanisms. Methods of comparing T(1) and T(2)* contrast efficiency are described and general rules that allow optimizing IONP detection sensitivity are derived. Contrary to conventional wisdom, optimizing T(1) contrast is often a good strategy for imaging IONPs. Under certain conditions, subtraction of a later echo signal from the ultrashort echo time signal not only improves IONP specificity by providing long T(2)* background suppression but also increases detection sensitivity, as it enables a synergistic combination of usually antagonist T(1) and T(2)* contrasts. In vitro experiments support our theory, and a molecular imaging application is demonstrated using tumor-targeted IONPs in vivo.


Subject(s)
Contrast Media , Ferric Compounds , Magnetic Resonance Imaging/methods , Nanoparticles , Prostatic Neoplasms/diagnosis , Animals , Artifacts , Contrast Media/chemical synthesis , Ferric Compounds/chemical synthesis , Humans , Linear Models , Male , Mice , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...