Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Chem ; 271: 116391, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38669909

ABSTRACT

LIM Kinases, LIMK1 and LIMK2, have become promising targets for the development of inhibitors with potential application for the treatment of several major diseases. LIMKs play crucial roles in cytoskeleton remodeling as downstream effectors of small G proteins of the Rho-GTPase family, and as major regulators of cofilin, an actin depolymerizing factor. In this article we describe the conception, synthesis, and biological evaluation of novel tetrahydropyridine pyrrolopyrimidine LIMK inhibitors. Homology models were first constructed to better understand the binding mode of our preliminary compounds and to explain differences in biological activity. A library of over 60 products was generated and in vitro enzymatic activities were measured in the mid to low nanomolar range. The most promising derivatives were then evaluated in cell on cofilin phosphorylation inhibition which led to the identification of 52 which showed excellent selectivity for LIMKs in a kinase selectivity panel. We also demonstrated that 52 affected the cell cytoskeleton by disturbing actin filaments. Cell migration studies with this derivative using three different cell lines displayed a significant effect on cell motility. Finally, the crystal structure of the kinase domain of LIMK2 complexed with 52 was solved, greatly improving our understanding of the interaction between 52 and LIMK2 active site. The reported data represent a basis for the development of more efficient LIMK inhibitors for future in vivo preclinical validation.


Subject(s)
Lim Kinases , Protein Kinase Inhibitors , Lim Kinases/antagonists & inhibitors , Lim Kinases/metabolism , Humans , Structure-Activity Relationship , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Molecular Structure , Cell Movement/drug effects , Models, Molecular , Pyridines/pharmacology , Pyridines/chemistry , Pyridines/chemical synthesis , Dose-Response Relationship, Drug , Pyrimidines/pharmacology , Pyrimidines/chemistry , Pyrimidines/chemical synthesis
2.
Plasmid ; 127: 102686, 2023 07.
Article in English | MEDLINE | ID: mdl-37207938

ABSTRACT

Duchenne Muscular Dystrophy and Cystic Fibrosis are two major monogenetic diseases which could be treated by non-viral gene therapy. For this purpose, plasmid DNA (pDNA) coding for the functional genes requires its equipment with signal molecules favouring its intracellular trafficking and delivery in the nucleus of the target cells. Here, two novel constructions of large pDNAs encoding the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and full-length dystrophin (DYS) genes are reported. The expression of CFTR and DYS genes are driven respectively by the hCEF1 airway epithelial cells and spc5-12 muscle cells specific promoter. Those pDNAs encode also the luciferase reporter gene driven by the CMV promoter to evaluate gene delivery in animals by bioluminescence. In addition, oligopurine • oligopyrimidine sequences are inserted to enable equipment of pDNAs with peptides conjugated with a triple helix forming oligonucleotide (TFO). Furthermore, specific κB sequences are also inserted to promote their NFκB-mediated nuclear import. pDNA constructions are reported; transfection efficiency, tissue specific expression of CFTR and dystrophin in target cells, and triple helix formation are demonstrated. These plasmids are tools of interest to develop non-viral gene therapy of Cystic Fibrosis and Duchenne Muscular Dystrophy.


Subject(s)
Cystic Fibrosis , Muscular Dystrophy, Duchenne , Animals , Active Transport, Cell Nucleus , Cystic Fibrosis/genetics , Cystic Fibrosis/therapy , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , DNA , Dystrophin/genetics , Dystrophin/metabolism , Genes, Reporter , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/therapy , Plasmids/genetics
3.
Cells ; 12(5)2023 03 04.
Article in English | MEDLINE | ID: mdl-36899941

ABSTRACT

LIM kinase 1 (LIMK1) and LIM kinase 2 (LIMK2) are serine/threonine and tyrosine kinases and the only two members of the LIM kinase family. They play a crucial role in the regulation of cytoskeleton dynamics by controlling actin filaments and microtubule turnover, especially through the phosphorylation of cofilin, an actin depolymerising factor. Thus, they are involved in many biological processes, such as cell cycle, cell migration, and neuronal differentiation. Consequently, they are also part of numerous pathological mechanisms, especially in cancer, where their involvement has been reported for a few years and has led to the development of a wide range of inhibitors. LIMK1 and LIMK2 are known to be part of the Rho family GTPase signal transduction pathways, but many more partners have been discovered over the decades, and both LIMKs are suspected to be part of an extended and various range of regulation pathways. In this review, we propose to consider the different molecular mechanisms involving LIM kinases and their associated signalling pathways, and to offer a better understanding of their variety of actions within the physiology and physiopathology of the cell.


Subject(s)
Cytoskeleton , Lim Kinases , Lim Kinases/metabolism , Phosphorylation , Cytoskeleton/metabolism , Actin Cytoskeleton/metabolism , Cell Differentiation
4.
Gene Ther ; 30(3-4): 271-277, 2023 04.
Article in English | MEDLINE | ID: mdl-35794469

ABSTRACT

In nonviral gene therapy approaches, the linkage of signal molecules to plasmid DNA (pDNA) is of interest for guiding its delivery to the nucleus. Here, we report its linkage to a peptide (P79-98) mediating migration on microtubules by using a triplex-forming oligonucleotide (TFO). pDNA of 5 kbp and 21 kbp containing 6 and 36 oligopurine • oligopyrimidine sites (TH), respectively, inserted outside the luciferase gene sequence were used. TFO with a dibenzocyclooctyl (DBCO) group in 3' end comprising some Bridged Nucleic Acid bases was conjugated by click chemistry with the peptide carrying an azide function in the C-terminal end. We found the formation of 6 and 18 triplex with pDNA of 5 kbp and 21 kbp, respectively. A twofold increase of the transfection efficiency was observed in the hind-limbs upon Hydrodynamic Limb Vein (HLV) injection in mice of naked P79-98 -pDNA of 21 kbp. This work paves the way for the selective equipping of pDNA with intracellular targeting molecules while preserving the full expression of the encoded gene.


Subject(s)
DNA , Oligonucleotides , Mice , Animals , Oligonucleotides/genetics , Oligonucleotides/chemistry , DNA/genetics , Plasmids/genetics , Transfection , Microtubules/metabolism , Peptides/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...