Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oncologist ; 25(9): e1303-e1317, 2020 09.
Article in English | MEDLINE | ID: mdl-32240562

ABSTRACT

LESSONS LEARNED: This study showed that carefully selected patients with locally advanced and metastatic forms of malignant melanoma and renal cell carcinoma could potentially have long-term disease control with a tag-7 gene-modified tumor cells-based vaccine. Randomized clinical trials in patients whose tumors produce low amounts of immunosuppressive factors are needed to confirm this hypothesis in both the adjuvant and metastatic settings. BACKGROUND: Immunotherapy may produce long-lasting effects on survival and toxicity. The magnitude of efficacy may be dependent on immune factors. We analyzed the results of a phase I/II study of a tag-7 gene-modified tumor cells-based vaccine (GMV) in patients with malignant melanoma (MM) or renal cell carcinoma (RCC) with biomarker analysis of immunosuppressive factors (ISFs) production by their tumor cells. METHODS: From 2001 to 2014, 80 patients received GMV: 68 with MM and 12 with RCC. Treatment in the metastatic setting included 61 patients (MM, 51; RCC, 10), and treatment in the adjuvant setting (after complete cytoreduction) included 19 patients (MM, 17; RCC, 2). Twenty-six patients were stage III (33%), and 54 (67%) were stage IV. The patients' tumor samples were transferred to culture, transfected with tag-7 gene, and inactivated by radiation. The produced product was injected subcutaneously every 3 weeks until progression or 2 years of therapy. ISFs were measured in the supernatants of the tumor cell cultures and used as predictive factors. RESULTS: No major safety issues or grade 5 adverse events (AEs) were seen. One grade 4 and two grade 3 AEs were registered. No AEs were registered in 89.4% of treatment cycles. No delayed AE was found. The 5-year overall survival (OS) in the intention-to-treat population was 25.1%. There were no differences between MM OS and RCC OS (log rank, p = .44). Median OS in the metastatic setting was 0.7 years and in the adjuvant setting was 3.1 years. Classification trees were built on the basis of ISF production (Fig. 1). The median OS was 6.6 years in the favorable prognosis (FP) group (major histocompatibility complex class I polypeptide-related sequence A [MICA] level ≤582 pg/mL, n = 15) and 4.6 months in the unfavorable (UF) group (MICA level >582 pg/mL, n = 12; p < .0001). No significant differences were found between classification trees based on ISFs (transforming growth factor ß1 [TGF-ß1], interleukin-10 [IL-10], and vascular endothelial growth factor [VEGF]). In patients with stage III-IV MM with FP, median OS was 2.3 years, with 31% patients alive at 10 years (Fig. 2) in the UF group (0.4 years; log rank, p = 1.94E-5). No FP patients received modern immunotherapy. CONCLUSION: GMV showed high results in carefully selected patients with low ISF (TGF-ß1, IL-10, and VEGF) production. The method should be further investigated in patients with FP.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Melanoma , Vaccines , Carcinoma, Renal Cell/therapy , Humans , Kidney Neoplasms/therapy , Melanoma/therapy , Vascular Endothelial Growth Factor A
2.
Clin Sarcoma Res ; 10: 3, 2020.
Article in English | MEDLINE | ID: mdl-32042403

ABSTRACT

BACKGROUND: Autologous dendritic cells (DC) loaded with tumor-associated antigens (TAAs) are a promising approach for anticancer immunotherapy. Polyantigen lysates appear to be an excellent source of TAAs for loading onto the patient's dendritic cells. Cancer/testis antigens (CTA) are expressed by a wide range of tumors, but are minimally expressed on normal tissues, and could serve as a universal target for immunotherapy. However, CTA expression levels can vary significantly in patients with the same tumor type. We proposed that patients who do not respond to DC-based therapy may have distinct features of the CTA expression profile on tumor cells. PATIENTS AND METHODS: We compared the gene expression of the principal families CTA in 22 melanoma and 27 soft tissue and bone sarcomas cell lines (STBS), received from patients and used for DC vaccine preparation. RESULTS: The majority (47 of 49, 95.9%) cell lines showed CTA gene activity. The incidence of gene expression of GAGE, NYESO1, MAGEA1, PRAME's was significantly different (adj. p < 0.05) between melanoma and sarcoma cell lines. The expression of the SCP1 gene was detected neither in melanoma cells nor in the STBS cells. Clustering by the gene expression profile revealed four different expression patterns. We found three main patterns types: hyperexpression of multiple CTA, hyperexpression of one CTA with almost no expression of others, and no expression of CTA. All clusters types exist in melanoma and sarcoma cell lines. We observed dependence of killing efficacy from the PRAME (rho = 0.940, adj. p < 0.01) expression during real-time monitoring with the xCELLigence system of the interaction between melanoma or sarcoma cells with the T-lymphocytes activated by the lysate of selected allogenous melanoma cell lines with high expression of CTA. CONCLUSION: Our results demonstrate that one can use lysates from allogeneic melanoma cell lines as a source of CTA for DC load during the production of anticancer vaccines for the STBS treatment. Patterns of CTA expression should be evaluated as biomarkers of response in prospective clinical trials.

SELECTION OF CITATIONS
SEARCH DETAIL
...