Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Immunol ; 53(12): e2350454, 2023 12.
Article in English | MEDLINE | ID: mdl-37621208

ABSTRACT

Human immune system (HIS) mice provide a model to study human immune responses in vivo. Currently available HIS mouse models may harbor mouse Fc Receptor (FcR)-expressing cells that exert potent effector functions following administration of human Ig. Previous studies showed that the ablation of the murine FcR gamma chain (FcR-γ) results in loss of antibody-dependent cellular cytotoxicity and antibody-dependent cellular phagocytosis in vivo. We created a new FcR-γ-deficient HIS mouse model to compare host (mouse) versus graft (human) effects underlying antibody-mediated immune responses in vivo. FcR-γ-deficient HIS recipients lack expression and function of mouse activating FcRs and can be stably and robustly reconstituted with human immune cells. By screening blood B-cell depletion by rituximab Ig variants, we found that human FcγRs-mediated IgG1 effects, whereas mouse activating FcγRs were dominant in IgG4 effects. Complement played a role as an IgG1 variant (IgG1 K322A) lacking complement binding activity was largely ineffective. Finally, we provide evidence that FcγRIIIA on human NK cells could mediate complement-independent B-cell depletion by IgG1 K322A. We anticipate that our FcR-γ-deficient HIS model will help clarify mechanisms of action of exogenous administered human antibodies in vivo.


Subject(s)
Receptors, Fc , Receptors, IgG , Humans , Mice , Animals , Receptors, IgG/genetics , Immunoglobulin G , Antibody-Dependent Cell Cytotoxicity , Macrophages , Complement System Proteins , Adaptive Immunity
2.
J Exp Med ; 219(3)2022 03 07.
Article in English | MEDLINE | ID: mdl-35230385

ABSTRACT

Decrypting the B cell ontogeny of HIV-1 broadly neutralizing antibodies (bNAbs) is paramount for vaccine design. Here, we characterized IgA and IgG bNAbs of three distinct B cell lineages in a viremic controller, two of which comprised only IgG+ or IgA+ blood memory B cells; the third combined both IgG and IgA clonal variants. 7-269 bNAb in the IgA-only lineage displayed the highest neutralizing capacity despite limited somatic mutation, and delayed viral rebound in humanized mice. bNAbs in all three lineages targeted the N332 glycan supersite. The 2.8-Å resolution cryo-EM structure of 7-269-BG505 SOSIP.664 complex showed a similar pose as 2G12, on an epitope mainly composed of sugar residues comprising the N332 and N295 glycans. Binding and cryo-EM structural analyses showed that antibodies from the two other lineages interact mostly with glycans N332 and N386. Hence, multiple B cell lineages of IgG and IgA bNAbs focused on a unique HIV-1 site of vulnerability can codevelop in HIV-1 viremic controllers.


Subject(s)
HIV Infections , HIV-1 , Animals , Antibodies, Neutralizing , Broadly Neutralizing Antibodies , Elite Controllers , Epitopes , HIV Antibodies , Humans , Immunoglobulin A , Immunoglobulin G , Mice , Polysaccharides , env Gene Products, Human Immunodeficiency Virus
3.
Cell Rep ; 30(4): 1013-1026.e7, 2020 01 28.
Article in English | MEDLINE | ID: mdl-31995746

ABSTRACT

Persistent viral infections subvert key elements of adaptive immunity. To compare germinal center (GC) B cell responses in chronic and acute lymphocytic choriomeningitis virus infection, we exploit activation-induced deaminase (AID) fate-reporter mice and perform adoptive B cell transfer experiments. Chronic infection yields GC B cell responses of higher cellularity than acute infections do, higher memory B cell and antibody secreting cell output for longer periods of time, a better representation of the late B cell repertoire in serum immunoglobulin, and higher titers of protective neutralizing antibodies. GC B cells of chronically infected mice are similarly hypermutated as those emerging from acute infection. They efficiently adapt to viral escape variants and even in hypermutation-impaired AID mutant mice, chronic infection selects for GC B cells with hypermutated B cell receptors (BCRs) and neutralizing antibody formation. These findings demonstrate that, unlike for CD8+ T cells, chronic viral infection drives a functional, productive, and protective GC B cell response.


Subject(s)
B-Lymphocytes/immunology , Germinal Center/immunology , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus/immunology , Single-Domain Antibodies/genetics , Acute Disease , Animals , Antibodies, Neutralizing/immunology , B-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , Cell Line , Chronic Disease , Cricetinae , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , Germinal Center/cytology , High-Throughput Nucleotide Sequencing , Immunoglobulin Joining Region/genetics , Immunohistochemistry , Lymphocytic Choriomeningitis/virology , Lymphocytic choriomeningitis virus/pathogenicity , Mice , Mice, Inbred C57BL , Mice, Knockout , Plasma Cells/immunology , Somatic Hypermutation, Immunoglobulin
4.
J Exp Med ; 214(4): 1169-1180, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28283534

ABSTRACT

During somatic hypermutation (SHM) of immunoglobulin genes, uracils introduced by activation-induced cytidine deaminase are processed by uracil-DNA glycosylase (UNG) and mismatch repair (MMR) pathways to generate mutations at G-C and A-T base pairs, respectively. Paradoxically, the MMR-nicking complex Pms2/Mlh1 is apparently dispensable for A-T mutagenesis. Thus, how detection of U:G mismatches is translated into the single-strand nick required for error-prone synthesis is an open question. One model proposed that UNG could cooperate with MMR by excising a second uracil in the vicinity of the U:G mismatch, but it failed to explain the low impact of UNG inactivation on A-T mutagenesis. In this study, we show that uracils generated in the G1 phase in B cells can generate equal proportions of A-T and G-C mutations, which suggests that UNG and MMR can operate within the same time frame during SHM. Furthermore, we show that Ung-/-Pms2-/- mice display a 50% reduction in mutations at A-T base pairs and that most remaining mutations at A-T bases depend on two additional uracil glycosylases, thymine-DNA glycosylase and SMUG1. These results demonstrate that Pms2/Mlh1 and multiple uracil glycosylases act jointly, each one with a distinct strand bias, to enlarge the immunoglobulin gene mutation spectrum from G-C to A-T bases.


Subject(s)
Base Pairing , DNA Mismatch Repair , Genes, Immunoglobulin , Mismatch Repair Endonuclease PMS2/physiology , Mutation , Uracil-DNA Glycosidase/physiology , Animals , Endodeoxyribonucleases/physiology , G1 Phase , Mice , Mice, Inbred C57BL
5.
Mol Cell Biol ; 34(12): 2176-87, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24710273

ABSTRACT

A/T mutations at immunoglobulin loci are introduced by DNA polymerase η (Polη) during an Msh2/6-dependent repair process which results in A's being mutated 2-fold more often than T's. This patch synthesis is initiated by a DNA incision event whose origin is still obscure. We report here the analysis of A/T oligonucleotide mutation substrates inserted at the heavy chain locus, including or not including internal C's or G's. Surprisingly, the template composed of only A's and T's was highly mutated over its entire 90-bp length, with a 2-fold decrease in mutation from the 5' to the 3' end and a constant A/T ratio of 4. These results imply that Polη synthesis was initiated from a break in the 5'-flanking region of the substrate and proceeded over its entire length. The A/T bias was strikingly altered in an Ung(-/-) background, which provides the first experimental evidence supporting a concerted action of Ung and Msh2/6 pathways to generate mutations at A/T bases. New analysis of Pms2(-/-) animals provided a complementary picture, revealing an A/T mutation ratio of 4. We therefore propose that Ung and Pms2 may exert a mutual backup function for the DNA incision that promotes synthesis by Polη, each with a distinct strand bias.


Subject(s)
AT Rich Sequence/genetics , DNA Glycosylases/deficiency , DNA Glycosylases/metabolism , DNA/genetics , Oligonucleotides/genetics , Somatic Hypermutation, Immunoglobulin/genetics , Uracil-DNA Glycosidase/deficiency , Uracil-DNA Glycosidase/metabolism , Adenosine Triphosphatases/metabolism , Amino Acid Motifs , Animals , Base Sequence , DNA Glycosylases/genetics , DNA Mismatch Repair , DNA Repair Enzymes/metabolism , DNA-Binding Proteins/metabolism , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , Gene Knock-In Techniques , Genetic Loci/genetics , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mismatch Repair Endonuclease PMS2 , Molecular Sequence Data , Mutagenesis , Mutation/genetics , Mutation Rate , Substrate Specificity , Transgenes/genetics , Uracil-DNA Glycosidase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...