Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 11(7)2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35883742

ABSTRACT

Human Group IIA secreted phospholipase A2 (sPLA2-IIA) enzyme plays a crucial role in several chronic inflammatory diseases such asasthma, atherosclerosis, gout, bronchitis, etc. Several studies showed that the antioxidants exert an anti-inflammatory function by inhibiting the sPLA2-IIA enzyme. Hence, the present study evaluated an antioxidant molecule, sinapic acid, for sPLA2-IIA inhibition as an anti-inflammatory function. Initially, the antioxidant efficacy of sinapic acid was evaluated, and it showed greater antioxidant potency. Further, sinapic acid inhibited 94.4 ± 4.83% of sPLA2-IIA activity with an IC50 value of 4.16 ± 0.13 µM. The mode of sPLA2-IIA inhibition was examined by increasing the substrate concentration from 30 to 120nM and the calcium concentration from 2.5 to 15 mM, which did not change the level of inhibition. Further, sinapic acid altered the intrinsic fluorescence and distorted the far UltraViolet Circular Dichroism (UV-CD) spectra of the sPLA2-IIA, indicating the direct enzyme-inhibitor interaction. Sinapic acid reduced the sPLA2-IIA mediated hemolytic activity from 94 ± 2.19% to 12.35 ± 2.57% and mouse paw edema from 171.75 ± 2.2% to 114.8 ± 1.98%, demonstrating the anti-inflammatory efficiency of sinapic acid by in situ and in vivo methods, respectively. Finally, sinapic acid reduced the hemorrhagic effect of Vipera russelli venom hemorrhagic complex-I (VR-HC-I) as an anti-hemorrhagic function. Thus, the above experimental results revealed the sinapic acid potency to be an antioxidant, anti-inflammatory and anti-hemorrhagic molecule, and therefore, it appears to be a promising therapeutic agent.

2.
Sci Rep ; 12(1): 7649, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35538123

ABSTRACT

Human group IIA secreted phospholipase A2 (GIIA) is a key enzyme in inflammatory reactions, worsening the condition of several chronic inflammatory diseases. The natural inhibitors of GIIA potentially block the production of inflammatory mediators. In the present study, elemolic acid, a triterpenoid from Boswellia serrata inhibited the GIIA enzyme in a concentration-dependent manner with IC50 value of 5.70 ± 0.02 µM. The mode of GIIA inhibition was studied by increasing the concentration of the substrate from 30 to 120 nM, and calcium from 2.5 to 15 mM, the level of inhibition was not changed. The inhibitor-enzyme interaction was examined by fluorimetry and Circular Dichroism (CD) studies; elemolic acid altered intrinsic fluorescence intensity and shifted far UV- CD spectra of GIIA enzyme, suggesting the direct interaction with GIIA. Elemolic acid neutralized the GIIA mediated indirect hemolytic activity from 94.5 to 9.8% and reduced GIIA induced mouse paw edema from 171.75 to 113.68%. Elemolic acid also reduced the hemorrhagic effect of GIIA along with Vipera russelii neurotoxic non-enzymatic peptide -VNTx-II (VR-HC-I). Thus, the elemolic acid has been proven as a potent inhibitor of GIIA enzyme and modulated the GIIA induced inflammatory response by in situ and in vivo methods.


Subject(s)
Anti-Inflammatory Agents , Daboia , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Edema/chemically induced , Edema/drug therapy , Inflammation/drug therapy , Mice , Phospholipases A2
3.
J Inflamm Res ; 15: 6905-6921, 2022.
Article in English | MEDLINE | ID: mdl-36619941

ABSTRACT

Background: Inflammation is generally connected to tumour progression and development. The secretory phospholipase A2IIa (sPLA2IIa) is an important inflammatory enzyme that catalyse the hydrolysis of membrane phospholipids into arachidonic and lysophosphatidic acid, which are the precursors for production of a lot of pro-inflammatory mediators like prostaglandins, prostacyclins, thromboxanes, leukotrienes and platelet activating factors, which involved in the proliferation, migration, invasion, and metastasis. Therefore, investigating safe and effective sPLA2IIa inhibitors as a therapeutic agent to treat cancer is indeed in need. Methods: Anti-inflammatory function of corosolic acid was evaluated by docking it with sPLA2IIa enzyme, sPLA2IIa inhibition, calcium and substrate concentration-dependent assays; intrinsic fluorescence and UV-CD analysis; neutralisation of sPLA2IIa induced indirect hemolytic and edema. Evaluated the anticancer activity of corosolic acid by MTT assays and caspase-3 expression; the anti-tumour activity by EAC-induced cell line and interleukin 6 expression. Results: The corosolic acid inhibits sPLA2IIa activity to 82.21±2.82%. The inhibition was evaluated by increasing calcium from 2.5 to 15 µM and substrate from 20 to 120 nM, it did not affect the level of inhibition. Corosolic acid altered the intrinsic fluorescence and UV-CD spectra of sPLA2IIa enzyme, indicating the direct interaction. It neutralised sPLA2IIa induced hemolytic activity from 97±1.23% to 15.75±1.44% and edema from 171.51±2.39% to 119.3±2.6%. Further, as antiproliferative activity, corosolic acid reduced the PC3 cell viability from 99.66±0.57% to 23±2.64% and suppressed LPS-induced IL-6 level from 94.35±2.2% to 34.36±2.4%. It increased mean survivability time from 30 to 38 days and displayed the drug-like qualities. Conclusion: All the experimental results have proven the corosolic acid as an anti-inflammatory and anticancer molecule that may further be used to develop it as a drug.

4.
Pharmacognosy Res ; 9(2): 174-181, 2017.
Article in English | MEDLINE | ID: mdl-28539742

ABSTRACT

BACKGROUND: Inflammation is a normal and necessary prerequisite to healing of the injured tissues. Inflammation contributes to all disease process including immunity, vascular pathology, trauma, sepsis, chemical, and metabolic injuries. The secretory phospholipase A2 (sPLA2) is a key enzyme in the production of pro-inflammatory mediators in chronic inflammatory disorders such as rheumatoid arthritis, coronary heart disease, diabetes, and asthma. The sPLA2 also contribute to neuroinflammatory disorders such as Parkinson's, Alzheimer's, and Crohn's disease. AIMS: The present study aims to investigate the inhibition of human sPLA2 by a popular medicinal herb Boerhaavia diffusa Linn. as a function of anti-inflammatory activity. MATERIALS AND METHODS: The aqueous and different organic solvents extracts of B. diffusa were prepared and evaluated for human synovial fluid, human pleural fluid, as well as Vipera russelli and Naja naja venom sPLA2 enzyme inhibition. RESULTS: Among the extracts, the ethanol extract of B. diffusa (EEBD) showed the highest sPLA2 inhibition and IC50 values ranging from 17.8 to 27.5 µg. Further, antioxidant and lipid peroxidation activities of B. diffusa extract were checked using 2,2-diphenyl-1-picrylhydrazyl radical, thiobarbituric acid, and rat liver homogenate. The antioxidant activity of EEBD was more or less directly proportional to in vitro sPLA2 inhibition. Eventually, the extract was subjected to neutralize sPLA2-induced mouse paw edema and indirect hemolytic activity. The EEBD showed similar potency in both the cases. CONCLUSIONS: The findings suggest that the bioactive molecule/s from the EEBD is/are potentially responsible for the observed in vitro and in vivo sPLA2 inhibition and antioxidant activity. SUMMARY: The present study aims to investigate the inhibition of human sPLA2 by a popular medicinal herb Boerhaavia diffusa Linn. as a function of anti inflammatory activity. Abbreviation Used: EEBD: Ethanolic extract of boerhaavia diffusa, sPLA2: Secretory phospholipase A2, HSF: Human synovial fluid, HPF: Human pleural fluid, VRV-PLA2-V: Vipera russelli phospholipase A2, NN-PLA2-I: Naja naja phospholipase A2.

SELECTION OF CITATIONS
SEARCH DETAIL
...