Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38753292

ABSTRACT

A data-driven reduced order model (ROM) based on a proper orthogonal decomposition-radial basis function (POD-RBF) approach is adopted in this paper for the analysis of blood flow dynamics in a patient-specific case of atrial fibrillation (AF). The full order model (FOM) is represented by incompressible Navier-Stokes equations, discretized with a finite volume (FV) approach. Both the Newtonian and the Casson's constitutive laws are employed. The aim is to build a computational tool able to efficiently and accurately reconstruct the patterns of relevant hemodynamics indices related to the stasis of the blood in a physical parametrization framework including the cardiac output in the Newtonian case and also the plasma viscosity and the hematocrit in the non-Newtonian one. Many FOM-ROM comparisons are shown to analyze the performance of our approach as regards errors and computational speed-up.

2.
Med Eng Phys ; 107: 103849, 2022 09.
Article in English | MEDLINE | ID: mdl-36068037

ABSTRACT

Left ventricular assist devices (LVADs) are used to provide haemodynamic support to patients with critical cardiac failure. Severe complications can occur because of the modifications of the blood flow in the aortic region. In this work, the effect of a continuous flow LVAD device on the aortic flow is investigated by means of a non-intrusive reduced order model (ROM) built using the proper orthogonal decomposition with interpolation (PODI) method based on radial basis functions (RBF). The full order model (FOM) is represented by the incompressible Navier-Stokes equations discretized by using a Finite Volume (FV) technique, coupled with three-element Windkessel models to enforce outlet boundary conditions in a multi-scale approach. A patient-specific framework is proposed: a personalized geometry reconstructed from Computed Tomography (CT) images is used and the individualization of the coefficients of the three-element Windkessel models is based on experimental data provided by the Right Heart Catheterization (RHC) and Echocardiography (ECHO) tests. At FOM level, we also consider the pre-surgery configuration in order to further validate the predictive capabilities of the model in several contexts. The ROM has been tested by considering a parametric setting with respect to the LVAD flow, which is a crucial parameter of the problem. We consider a parameter range that covers typical clinical values. The accuracy of the ROM is assessed against results obtained with the FOM both for primal, velocity and pressure, and derived quantities, wall shear stress (WSS). Finally, we briefly discuss the efficiency of our ROM approach.


Subject(s)
Heart Failure , Heart-Assist Devices , Aorta/physiology , Echocardiography , Heart Failure/surgery , Heart-Assist Devices/adverse effects , Hemodynamics , Humans
3.
Int J Numer Methods Eng ; 123(14): 3148-3178, 2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35912036

ABSTRACT

Numerical stabilization is often used to eliminate (alleviate) the spurious oscillations generally produced by full order models (FOMs) in under-resolved or marginally-resolved simulations of convection-dominated flows. In this article, we investigate the role of numerical stabilization in reduced order models (ROMs) of marginally-resolved, convection-dominated incompressible flows. Specifically, we investigate the FOM-ROM consistency, that is, whether the numerical stabilization is beneficial both at the FOM and the ROM level. As a numerical stabilization strategy, we focus on the evolve-filter-relax (EFR) regularization algorithm, which centers around spatial filtering. To investigate the FOM-ROM consistency, we consider two ROM strategies: (i) the EFR-noEFR, in which the EFR stabilization is used at the FOM level, but not at the ROM level; and (ii) the EFR-EFR, in which the EFR stabilization is used both at the FOM and at the ROM level. We compare the EFR-noEFR with the EFR-EFR in the numerical simulation of a 2D incompressible flow past a circular cylinder in the convection-dominated, marginally-resolved regime. We also perform model reduction with respect to both time and Reynolds number. Our numerical investigation shows that the EFR-EFR is more accurate than the EFR-noEFR, which suggests that FOM-ROM consistency is beneficial in convection-dominated, marginally-resolved flows.

4.
Biotechnol Biofuels ; 5(1): 63, 2012 Aug 28.
Article in English | MEDLINE | ID: mdl-22928996

ABSTRACT

BACKGROUND: The enzymatic conversion of lignocellulosic plant biomass into fermentable sugars is a crucial step in the sustainable and environmentally friendly production of biofuels. However, a major drawback of enzymes from mesophilic sources is their suboptimal activity under established pretreatment conditions, e.g. high temperatures, extreme pH values and high salt concentrations. Enzymes from extremophiles are better adapted to these conditions and could be produced by heterologous expression in microbes, or even directly in the plant biomass. RESULTS: Here we show that a cellulase gene (sso1354) isolated from the hyperthermophilic archaeon Sulfolobus solfataricus can be expressed in plants, and that the recombinant enzyme is biologically active and exhibits the same properties as the wild type form. Since the enzyme is inactive under normal plant growth conditions, this potentially allows its expression in plants without negative effects on growth and development, and subsequent heat-inducible activation. Furthermore we demonstrate that the recombinant enzyme acts in high concentrations of ionic liquids and can therefore degrade α-cellulose or even complex cell wall preparations under those pretreatment conditions. CONCLUSION: The hyperthermophilic endoglucanase SSO1354 with its unique features is an excellent tool for advanced biomass conversion. Here we demonstrate its expression in planta and the possibility for post harvest activation. Moreover the enzyme is suitable for combined pretreatment and hydrolysis applications.

5.
J Bacteriol ; 194(18): 5091-100, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22821975

ABSTRACT

A sequence encoding a putative extracellular endoglucanase (sso1354) was identified in the complete genome sequence of Sulfolobus solfataricus. The encoded protein shares signature motifs with members of glycoside hydrolases family 12. After an unsuccessful first attempt at cloning the full-length coding sequences in Escherichia coli, an active but unstable recombinant enzyme lacking a 27-residue N-terminal sequence was generated. This 27-amino-acid sequence shows significant similarity with corresponding regions in the sugar binding proteins AraS, GlcS, and TreS of S. solfataricus that are responsible for anchoring them to the plasma membrane. A strategy based on an effective vector/host genetic system for Sulfolobus and on expression control by the promoter of the S. solfataricus gene which encodes the glucose binding protein allowed production of the enzyme in sufficient quantities for study. In fact, the enzyme expressed in S. solfataricus was stable and highly thermoresistant and showed optimal activity at low pH and high temperature. The protein was detected mainly in the plasma membrane fraction, confirming the structural similarity to the sugar binding proteins. The results of the protein expression in the two different hosts showed that the SSO1354 enzyme is endowed with an endo-ß-1-4-glucanase activity and specifically hydrolyzes cellulose. Moreover, it also shows significant but distinguishable specificity toward several other sugar polymers, such as lichenan, xylan, debranched arabinan, pachyman, and curdlan.


Subject(s)
Cellulase/metabolism , Cellulose/metabolism , Membrane Proteins/metabolism , Sulfolobus solfataricus/enzymology , Sulfolobus solfataricus/metabolism , Cellulase/chemistry , Cellulase/genetics , Cloning, Molecular , Enzyme Stability , Escherichia coli/genetics , Hydrogen-Ion Concentration , Hydrolysis , Membrane Proteins/chemistry , Membrane Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity , Sulfolobus solfataricus/genetics , Temperature
6.
Biotechnol Biofuels ; 4(1): 33, 2011 Sep 23.
Article in English | MEDLINE | ID: mdl-21943248

ABSTRACT

BACKGROUND: In order to generate biofuels, insoluble cellulosic substrates are pretreated and subsequently hydrolyzed with cellulases. One way to pretreat cellulose in a safe and environmentally friendly manner is to apply, under mild conditions, non-hydrolyzing proteins such as swollenin - naturally produced in low yields by the fungus Trichoderma reesei. To yield sufficient swollenin for industrial applications, the first aim of this study is to present a new way of producing recombinant swollenin. The main objective is to show how swollenin quantitatively affects relevant physical properties of cellulosic substrates and how it affects subsequent hydrolysis. RESULTS: After expression in the yeast Kluyveromyces lactis, the resulting swollenin was purified. The adsorption parameters of the recombinant swollenin onto cellulose were quantified for the first time and were comparable to those of individual cellulases from T. reesei. Four different insoluble cellulosic substrates were then pretreated with swollenin. At first, it could be qualitatively shown by macroscopic evaluation and microscopy that swollenin caused deagglomeration of bigger cellulose agglomerates as well as dispersion of cellulose microfibrils (amorphogenesis). Afterwards, the effects of swollenin on cellulose particle size, maximum cellulase adsorption and cellulose crystallinity were quantified. The pretreatment with swollenin resulted in a significant decrease in particle size of the cellulosic substrates as well as in their crystallinity, thereby substantially increasing maximum cellulase adsorption onto these substrates. Subsequently, the pretreated cellulosic substrates were hydrolyzed with cellulases. Here, pretreatment of cellulosic substrates with swollenin, even in non-saturating concentrations, significantly accelerated the hydrolysis. By correlating particle size and crystallinity of the cellulosic substrates with initial hydrolysis rates, it could be shown that the swollenin-induced reduction in particle size and crystallinity resulted in high cellulose hydrolysis rates. CONCLUSIONS: Recombinant swollenin can be easily produced with the robust yeast K. lactis. Moreover, swollenin induces deagglomeration of cellulose agglomerates as well as amorphogenesis (decrystallization). For the first time, this study quantifies and elucidates in detail how swollenin affects different cellulosic substrates and their hydrolysis.

7.
Nucleic Acids Res ; 34(17): e114, 2006.
Article in English | MEDLINE | ID: mdl-16971457

ABSTRACT

The pSSVx genetic element from Sulfolobus islandicus REY15/4 is a hybrid between a plasmid and a fusellovirus, able to be maintained in non-integrative form and to spread when the helper SSV2 virus is present in the cells. In this work, the satellite virus was engineered to obtain an Escherichia coli-Sulfolobus solfataricus shuttle vector for gene transfer and expression in S.solfataricus by fusing site-specifically the pSSVx chromosome with an E.coli plasmid replicon and the ampicillin resistance gene. The pSSVx-based vector was proven functional like the parental virus, namely it was able to spread efficiently through infected S.solfataricus cells. Moreover, the hybrid plasmid stably transformed S.solfataricus and propagated with no rearrangement, recombination or integration into the host chromosome. The high copy number of the artificial genetic element was found comparable with that calculated for the wild-type pSSVx in the new host cells, with no need of genetic markers for vector maintenance in the cells and for transfomant enrichment. The newly constructed vector was also shown to be an efficient cloning vehicle for the expression of passenger genes in S.solfataricus. In fact, a derivative plasmid carrying an expression cassette of the lacS gene encoding the beta-glycosidase from S.solfataricus under the control of the Sulfolobus chaperonine (thermosome tf55) heat shock promoter was also able to drive the expression of a functional enzyme. Complementation of the beta-galactosidase deficiency in a deletion mutant strain of S.solfataricus demonstrated that lacS gene was an efficient marker for selection of single transformants on solid minimal lactose medium.


Subject(s)
Fuselloviridae/genetics , Genetic Vectors , Sulfolobus solfataricus/genetics , Sulfolobus/virology , DNA Replication , Escherichia coli/genetics , Genes, Reporter , Genetic Engineering , Genetic Vectors/chemistry , Mutation , Plasmids/chemistry , Transfection , beta-Galactosidase/analysis , beta-Galactosidase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...