Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chempluschem ; 87(6): e202200116, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35608832

ABSTRACT

The Philae lander of the Rosetta space mission made a non-nominal landing on comet 67P/Churyumov-Gerasimenko on November 12, 2014. Shortly after, using the limited power available from Philae's batteries, the COSAC instrument performed a single 18-minutes gas chromatogram, which has remained unpublished until now due to the lack of identifiable elution. This work shows that, despite the unsuccessful drilling of the comet and deposition of surface material in the SD2 ovens, the measurements from the COSAC instrument were executed nominally. We describe an automated search for extremely small deviations from noise and discuss the possibility of a signal from ethylene glycol at m/z 31. Arguments for and against this detection are listed, but the results remain inconclusive. Still, the successful operations of an analytical chemistry laboratory on a cometary nucleus gives great hope for the future of space exploration.

2.
Angew Chem Int Ed Engl ; 61(29): e202201925, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35460531

ABSTRACT

The most pristine material of the Solar System is assumed to be preserved in comets in the form of dust and ice as refractory matter. ESA's mission Rosetta and its lander Philae had been developed to investigate the nucleus of comet 67P/Churyumov-Gerasimenko in situ. Twenty-five minutes after the initial touchdown of Philae on the surface of comet 67P in November 2014, a mass spectrum was recorded by the time-of-flight mass spectrometer COSAC onboard Philae. The new characterization of this mass spectrum through non-negative least squares fitting and Monte Carlo simulations reveals the chemical composition of comet 67P. A suite of 12 organic molecules, 9 of which also found in the original analysis of this data, exhibit high statistical probability to be present in the grains sampled from the cometary nucleus. These volatile molecules are among the most abundant in the comet's chemical composition and represent an inventory of the first raw materials present in the early Solar System.

3.
Science ; 349(6247): aab0689, 2015 Jul 31.
Article in English | MEDLINE | ID: mdl-26228156

ABSTRACT

Comets harbor the most pristine material in our solar system in the form of ice, dust, silicates, and refractory organic material with some interstellar heritage. The evolved gas analyzer Cometary Sampling and Composition (COSAC) experiment aboard Rosetta's Philae lander was designed for in situ analysis of organic molecules on comet 67P/Churyumov-Gerasimenko. Twenty-five minutes after Philae's initial comet touchdown, the COSAC mass spectrometer took a spectrum in sniffing mode, which displayed a suite of 16 organic compounds, including many nitrogen-bearing species but no sulfur-bearing species, and four compounds­methyl isocyanate, acetone, propionaldehyde, and acetamide­that had not previously been reported in comets.

4.
Angew Chem Int Ed Engl ; 53(1): 210-4, 2014 Jan 03.
Article in English | MEDLINE | ID: mdl-24227543

ABSTRACT

Circularly polarized light (CPL) is known to be a true chiral entity capable of generating absolute molecular asymmetry. However, the degree of inducible optical activity depends on the λ of the incident CPL. Exposure of amorphous films of rac-alanine to tunable CPL led to enantiomeric excesses (ee) which not only follow the helicity but also the energy of driving electromagnetic radiation. Postirradiation analyses using enantioselective multidimensional GC revealed energy-controlled ee values of up to 4.2 %, which correlate with theoretical predictions based on newly recorded anisotropy spectra g(λ). The tunability of asymmetric photochemical induction implies that both magnitude and sign can be fully controlled by CPL. Such stereocontrol provides novel insights into the wavelength and polarization dependence of asymmetric photochemical reactions and are highly relevant for absolute asymmetric molecular synthesis and for understanding the origins of homochirality in living matter.

5.
Top Curr Chem ; 333: 41-82, 2013.
Article in English | MEDLINE | ID: mdl-22976459

ABSTRACT

Amino acids are the fundamental building blocks of proteins, the biomolecules that provide cellular structure and function in all living organisms. A majority of amino acids utilized within living systems possess pre-specified orientation geometry (chirality); however the original source for this specific orientation remains uncertain. In order to trace the chemical evolution of life, an appreciation of the synthetic and evolutional origins of the first chiral amino acids must first be gained. Given that the amino acids in our universe are likely to have been synthesized in molecular clouds in interstellar space, it is necessary to understand where and how the first synthesis might have occurred. The asymmetry of the original amino acid synthesis was probably the result of exposure to chiral photons in the form of circularly polarized light (CPL), which has been detected in interstellar molecular clouds. This chirality transfer event, from photons to amino acids, has been successfully recreated experimentally and is likely a combination of both asymmetric synthesis and enantioselective photolysis. A series of innovative studies have reported successful simulation of these environments and afforded production of chiral amino acids under realistic circumstellar and interstellar conditions: irradiation of interstellar ice analogues (CO, CO2, NH3, CH3OH, and H2O) with circularly polarized ultraviolet photons at low temperatures does result in enantiomer enriched amino acid structures (up to 1.3% ee). This topical review summarizes current knowledge and recent discoveries about the simulated interstellar environments within which amino acids were probably formed. A synopsis of the COSAC experiment onboard the ESA cometary mission ROSETTA concludes this review: the ROSETTA mission will soft-land on the nucleus of the comet 67P/Churyumov-Gerasimenko in November 2014, anticipating the first in situ detection of asymmetric organic molecules in cometary ices.


Subject(s)
Amino Acids/biosynthesis , Amino Acids/chemistry , Extraterrestrial Environment/chemistry , Amino Acids/analysis , Stereoisomerism
6.
Chem Soc Rev ; 41(16): 5447-58, 2012 Aug 21.
Article in English | MEDLINE | ID: mdl-22576562

ABSTRACT

The primordial appearance of chiral amino acids was an essential component of the asymmetric evolution of life on Earth. In this tutorial review we will explore the original life-generating, symmetry-breaking event and summarise recent thoughts on the origin of enantiomeric excess in the universe. We will then highlight the transfer of asymmetry from chiral photons to racemic amino acids and elucidate current experimental data on the photochemical synthesis of amino and diamino acid structures in simulated interstellar and circumstellar ice environments. The chirality inherent within actual interstellar (cometary) ice environments will be considered in this discussion: in 2014 the Rosetta Lander Philae onboard the Rosetta space probe is planned to detach from the orbiter and soft-land on the surface of the nucleus of comet 67P/Churyumov-Gerasimenko. It is equipped for the in situ enantioselective analysis of chiral prebiotic organic species in cometary ices. The scientific design of this mission will therefore be presented in the context of analysing the formation of amino acid structures within interstellar ice analogues as a means towards furthering understanding of the origin of asymmetric biological molecules.


Subject(s)
Amino Acids/analysis , Extraterrestrial Environment/chemistry , Amino Acids/chemical synthesis , Evolution, Chemical , Exobiology , Ice/analysis , Meteoroids , Models, Molecular , Origin of Life , Photochemistry , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...