Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Physiol Mol Biol Plants ; 30(3): 417-433, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38633277

ABSTRACT

Allelopathy is a natural phenomenon of competing and interfering with other plants or microbial growth by synthesizing and releasing the bioactive compounds of plant or microbial origin known as allelochemicals. This is a sub-discipline of chemical ecology concerned with the effects of bioactive compounds produced by plants or microorganisms on the growth, development and distribution of other plants and microorganisms in natural communities or agricultural systems. Allelochemicals have a direct or indirect harmful effect on one plant by others, especially on the development, survivability, growth, and reproduction of species through the production of chemical inhibitors released into the environment. Cultivation systems that take advantage of allelopathic plants' stimulatory/inhibitory effects on plant growth and development while avoiding allelopathic autotoxicity is critical for long-term agricultural development. Allelopathy is one element that defines plant relationships and is involved in weed management, crop protection, and microbial contact. Besides, the allelopathic phenomenon has also been reported in the forest ecosystem; however, its presence depends on the forest type and the surrounding environment. In the present article, major aspects addressed are (1) literature review on the impacts of allelopathy in agroecosystems and underpinning the research gaps, (2) chemical, physiological, and ecological mechanisms of allelopathy, (3) genetic manipulations, plant defense, economic benefits, fate, prospects and challenges of allelopathy. The literature search and consolidation efforts in this article shall pave the way for future research on the potential application of allelopathic interactions across various ecosystems.

3.
Heliyon ; 9(3): e14588, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36950636

ABSTRACT

The present study was carried out to evaluate the performance of native plant growth-promoting rhizobacteria (PGPR) on jhum paddy yield enhancement in Nagaland, Northeast India. Three indigenous PGPR isolates (Bacillus cereus MKGB, Pseudomonas fluorescens MKGPf, and Azospirillum oryzae MKGAz) were tested in the soil microcosm and jhum fields of Longkhum and Ungma villages in Mokokchung, Nagaland. The maximum 78.44% seed germination, 165 cm plant height, 30 leaves, 5 tillers, and 5 panicles per plant were recorded in the PGPR consortium inoculated pot soil. Similarly, maximum 151 grains per panicle, 21.66 g grain yield per plant, and 33.50 g of straw biomass were recorded in the same treatment. The observations from the field trials revealed a maximum of 4.67 t ha-1 paddy yield in the Longkhum village jhum field inoculated with the PGPR consortium which was significantly different from the control (T1) at a p value of ≤0.05%. Similarly 4.74 t ha-1 paddy yield was obtained from the PGPR consortium applied jhum plots in Ungma village. The PGPR consortium was found more effective and promising than the single culture inoculation in paddy yield enhancement. The study suggests the application of tested PGPR consortium in jhum fields for soil health and crop productivity improvement and achieving agricultural sustainability as well as social prosperity in the rural areas of North East India.

4.
Environ Sci Pollut Res Int ; 29(43): 64732-64744, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35476266

ABSTRACT

Traditional agroforestry systems, one of the time tested and dominant land use from tropical to sub-tropical regions, were recognized for their contributions to food production, biodiversity conservation, and atmospheric carbon sequestration. Their management often varies from region to region. However, these systems frequently mimic economically managed land uses due to increased pressure on the monetary requirement of their managers. The present study aims to evaluate (i) tree density, (ii) tree diversity indices, and (iii) identify the biomass carbon important tree species managed by different communities of the Indian Eastern Himalayan region. We found that the Mizo community harbored the highest number of tree species (35) in the traditional agroforestry system with the highest tree diversity index (3.47). Total biomass carbon of tropical agroforestry systems managed by different communities ranged between 4.72 Mg ha-1 (Meitei) and 29.26 Mg ha-1 (Bengali). Similarly, in the sub-tropical traditional agroforestry system, the highest and the lowest biomass carbon was observed in Mizo- (10.93 Mg ha-1) and Angami- (6.05 Mg ha-1) managed systems. Of the 31 biomass carbon, important species found across the traditional agroforestry systems, Artocarpus heterophyllus, had the highest occurrence (50%), followed by Parkia timoriana (37.5) and Amoora rohituka, Delonix regia, Mangifera indica, and Toona ciliata (25% for each species). Farmers' preference to cash return of a species, trees density, and basal area were the determinant factors in the carbon stock potential of these systems. The present study suggests that the farmers' preferred and dominant species in their agroecosystems have a limited scope of enhanced biomass carbon storage. Therefore, improvement of traditional agroforestry systems through selective incorporation of biomass carbon important tree species is recommended to enhance the carbon sink capacity of these systems.


Subject(s)
Carbon , Trees , Biodiversity , Biomass , Carbon Sequestration
5.
Lancet ; 399(10332): 1313-1321, 2022 04 02.
Article in English | MEDLINE | ID: mdl-35367003

ABSTRACT

BACKGROUND: ZyCoV-D, a DNA-based vaccine, showed promising safety and immunogenicity in a phase 1/2 trial. We now report the interim efficacy results of phase 3 clinical trial with ZyCoV-D vaccine in India. METHODS: We conducted an interim analysis of a multicentre, double-blind, randomised, placebo-controlled phase 3 trial at 49 centres in India. Healthy participants aged at least 12 years were enrolled and randomly assigned (1:1) to receive either ZyCov-D vaccine (Cadila Healthcare; 2 mg per dose) or placebo. An interactive web response system was used for randomisation (blocks of four) of participants as well as to enrol those aged 60 years and older with or without comorbid conditions, and those aged 12-17 years. It was also used to identify 600 participants for immunogenicity (blocks of six). Participants, investigators, and outcome assessors were masked to treatment assignment. Three doses of vaccine or placebo were administered intradermally via a needle-free injection system 28 days apart. The primary outcome was the number of participants with first occurrence of symptomatic RT-PCR-positive COVID-19 28 days after the third dose, until the targeted number of cases (interim analysis n=79, full analysis n=158) have been achieved. The analysis was done in the per-protocol population, which consisted of all participants with negative baseline SARS-CoV-2 status who received three doses of vaccine or placebo. Assessment of safety and tolerability was based on the safety population, which consisted of all enrolled participants who were known to have received at least one dose of study vaccine or placebo. This trial is registered with Clinical Trial Registry India, CTRI/2021/01/030416, and is ongoing. FINDINGS: Between Jan 16, and June 23, 2021 (data cutoff), 33 194 individuals were screened, of whom 5241 did not meet screening criteria and 27 703 were enrolled and randomly assigned to receive ZyCoV-D (n=13 851) or placebo (n=13 852). Per-protocol, 81 cases were eligible and included in efficacy analysis (20 of 12 350 in the ZyCoV-D group and 61 of 12 320 in placebo group). The ZyCoV-D vaccine efficacy was found to be 66·6% (95% CI 47·6-80·7). The occurrence of solicited adverse events was similar between the treatment groups (623 [4·49%] in the ZyCoV-D group vs 620 [4·47%] in the placebo group). There were two deaths (one in each group) reported at the data cutoff, neither of which was considered related to the study treatments. INTERPRETATION: In this interim analysis, ZyCoV-D vaccine was found to be efficacious, safe, and immunogenic in a phase 3 trial. FUNDING: National Biopharma Mission, Department of Biotechnology, Government of India and Cadila Healthcare, Ahmedabad, Gujarat India.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adolescent , Aged , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Child , DNA , Double-Blind Method , Humans , India , Middle Aged , SARS-CoV-2
6.
Microb Ecol ; 84(3): 643-675, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34647148

ABSTRACT

The Himalayas are one of the most mystical, yet least studied terrains of the world. One of Earth's greatest multifaceted and diverse montane ecosystems is also one of the thirty-four global biodiversity hotspots of the world. These are supposed to have been uplifted about 60-70 million years ago and support, distinct environments, physiography, a variety of orogeny, and great biological diversity (plants, animals, and microbes). Microbes are the pioneer colonizer of the Himalayas that are involved in various bio-geological cycles and play various significant roles. The applications of Himalayan microbiomes inhabiting in lesser to greater Himalayas have been recognized. The researchers explored the applications of indigenous microbiomes in both agricultural and environmental sectors. In agriculture, microbiomes from Himalayan regions have been suggested as better biofertilizers and biopesticides for the crops growing at low temperature and mountainous areas as they help in the alleviation of cold stress and other biotic stresses. Along with alleviation of low temperature, Himalayan microbes also have the capability to enhance plant growth by availing the soluble form of nutrients like nitrogen, phosphorus, potassium, zinc, and iron. These microbes have been recognized for producing plant growth regulators (abscisic acid, auxin, cytokinin, ethylene, and gibberellins). These microbes have been reported for bioremediating the diverse pollutants (pesticides, heavy metals, and xenobiotics) for environmental sustainability. In the current perspectives, present review provides a detailed discussion on the ecology, biodiversity, and adaptive features of the native Himalayan microbiomes in view to achieve agro-environmental sustainability.


Subject(s)
Microbiota , Animals , Biodiversity , Agriculture , Plant Development , Crops, Agricultural
7.
Sci Total Environ ; 698: 134266, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31499352

ABSTRACT

Agricultural and forestry activities can affect soil organic carbon (SOC) levels and CO2 emissions from terrestrial ecosystems due to land use changes. In Northeast Himalayas, studies on the effects of forest conversion to temporary agricultural lands (jhum) on the loss of SOC and soil quality degradation have received the attention of policy makers and scientific research. Presently, local communities are now oriented towards the settled plantations systems with modern cash crops such as tea and rubber, that could act as potential SOC sinks. However, no information on SOC dynamics and simulation studies after land-use change from temporary agricultural lands (jhum) to settled cultivations and under climate change (CC) conditions are available for the Meghalaya state. Applying the RothC model, we focused on four different scenarios including the conversion from jhum to settled cultivation (rubber plantations and tea gardens), as well as continuous jhum cultivation and jhum to jhum with a period of secondary succession. Simulations under CC conditions indicated that SOC stocks significantly increased by 1.20 t C ha-1 yr-1 in tea gardens compared to rubber and jhum scenarios. Conversely, SOC stocks slightly decreased by 0.07 t C ha-1 yr-1 in rubber plantations, while the regrowth of a natural vegetation cover as secondary succession following the abandonment of the jhum fields, showed a lower SOC decrease (0.18 t C ha-1 yr-1) compared to the continuous jhum cultivation (0.24 t C ha-1 yr-1). Thus, for CC mitigation in a policy perspective, tea gardens could represent the best land use to store increasing amounts of SOC in the long-term perspective and optimize farmers' incomes, while in rubber plantations SOC storage is limited in time. Jhum cultivation can benefit in terms of productivity and profitability by extending the duration of the secondary succession period.

8.
3 Biotech ; 6(2): 190, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28330262

ABSTRACT

A gram-negative, rod-shaped, isoproturon (IPU) utilizing bacterium was isolated from herbicide-applied wheat fields of Tarai agro-ecosystem, Pantnagar. The phylogenetic sequence analysis based on 16S rRNA sequence revealed that the isolate could be a distinct species within the genus Pseudomonas. The isolate was a close relative of Pseudoxanthomonas japonensis (95 % similarity) and designated as K2. The bacterial isolate showed positive reaction for oxidase, catalase, and 20 carbohydrates using KB009 Part A and B HiCarbohydrate™ Kit. Degradation experiments were conducted using 200 mg l-1 initial IPU as a source of carbon at different pH and temperatures. Maximum IPU degradation by K2 was observed at pH 7.0 and 30 °C, while least degradation at 6.5 pH and 25 °C. Addition of dextrose along with IPU as an auxiliary carbon source increased IPU degradation by 4.72 %, as compared to the IPU degradation without dextrose under optimum conditions. 4-isopropylaniline was detected as a degradation by-product in the medium. The present study demonstrated the IPU metabolizing capacity of a novel bacterial isolate K2 that can be a better choice for the remediation of IPU-contaminated sites.

9.
Open Orthop J ; 9: 210-3, 2015.
Article in English | MEDLINE | ID: mdl-26161159

ABSTRACT

Removal of metal implants is a common procedure that is performed for a variety of indications. However, problems such as a buried screw head may occasionally arise and render hardware removal difficult or even impossible. The problem is further compounded when the initial screw was inserted percutaneously or via a minimally-invasive (MIS) technique. In the present paper, we introduce a novel, minimally invasive technique to remove buried cannulated screws which obviates the need for excessive extension of the skin incision, surgical exploration, soft tissue dissection or excess bone removal, which surgeons may otherwise have to undertake to uncover the buried screw head. This technique is especially useful in removing cannulated screws which have been inserted using small stab incisions and MIS techniques initially. This technique can be applied to the removal of buried cannulated screws which are placed into any bone in the body.

10.
Environ Monit Assess ; 186(3): 1679-87, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24150716

ABSTRACT

Biosorption of Cu(2+), Zn(2+), and Cr(6+) from aqueous solutions by leaf biomass of Jatropha curcas was investigated as a function of biomass concentration, initial metal ion concentration, contact time, and pH of the solution systematically. The aim of this study was to optimize biosorption process and find out a suitable kinetic model for the metal removal in single and multi-metal system. The experimental data were analyzed using two sorption kinetic models, viz., pseudo-first- and pseudo-second-order equations, to determine the best fit equation for the biosorption of metal ions Cu(2+), Zn(2+), and Cr(6+) onto the leaf biomass of J. curcas in different metal systems. The experimental data fitted well the pseudo-second-order equation and provided the best correlation for the biosorption process. The findings of the present investigation revealed that J. curcas leaf biomass was an eco-friendly and cost-effective biosorbent for the removal of heavy metal ions from wastewater.


Subject(s)
Jatropha/metabolism , Metals, Heavy/metabolism , Water Pollutants, Chemical/metabolism , Biodegradation, Environmental , Biomass , Environmental Monitoring , Kinetics , Metals, Heavy/analysis , Wastewater , Water Pollutants, Chemical/analysis
11.
Environ Sci Pollut Res Int ; 20(8): 5198-211, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23361177

ABSTRACT

Chromate-resistant bacterial strain isolated from the soil of tannery was studied for Cr(VI) bioaccumulation in free and immobilised cells to evaluate its applicability in chromium removal from aqueous solution. Based on the comparative analysis of the 16S rRNA gene, and phenotypic and biochemical characterization, this strain was identified as Paenibacillus xylanilyticus MR12. Mechanism of Cr adsorption was also ascertained by chemical modifications of the bacterial biomass followed by Fourier transform infrared spectroscopy analysis of the cell wall constituents. The equilibrium biosorption analysed using isotherms (Langmuir, Freundlich and Dubinin-Redushkevich) and kinetics models (pseudo-first-order, second-order and Weber-Morris) revealed that the Langmuir model best correlated to experimental data, and Weber-Morris equation well described Cr(VI) biosorption kinetics. Polyvinyl alcohol alginate immobilised cells had the highest Cr(VI) removal efficiency than that of free cells and could also be reused four times for Cr(VI) removal. Complete reduction of chromate in simulated effluent containing Cu(2+), Mg(2+), Mn(2+) and Zn(2+) by immobilised cells, demonstrated potential applications of a novel immobilised bacterial strain MR12, as a vital bioresource in Cr(VI) bioremediation technology.


Subject(s)
Chromium/metabolism , Paenibacillus/metabolism , Water Pollutants, Chemical/metabolism , Adsorption , Alginates/chemistry , Chromium/chemistry , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Industrial Waste , Kinetics , Paenibacillus/chemistry , Paenibacillus/isolation & purification , Polyvinyl Alcohol/chemistry , Soil Microbiology , Tanning , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...