Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(6): e27771, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38524577

ABSTRACT

Marine renewable energy is regarded as a nascent renewable energy resource that is less utilized due to a number of challenges in the sector. This paper focused on using both traditional and bibliometric analysis approaches to review the marine energy industry. It also assessed the various opportunities and challenges in the sector beyond technological challenges using PESTEL analysis. The results from the study identified the availability of renewable energy targets, international and national greenhouse gas (GHG) emissions reduction targets, job creation, skill transfer from offshore industries, renewable support, and low GHG emissions as the major opportunities for the sector. The challenges in the sector include the lack of commonality in device designs, high initial capital costs, lack of appropriate legal and regulatory frameworks, lack of funding, fragmentations in regulatory institutions, bad macro-economic indicators in some countries, environmental challenges, the survivability of the various technologies in the harsh oceanic environment, and strong competition from other renewable energy sources. The outcome of the bibliometric analysis spanning from 2013 to 2023 shows that tidal power is the focus of research in the field, and most studies are either focused on ways to improve its efficiency in terms of technology or on the identification of resource potentials for the siting of the various marine renewable power systems. Recommendations such as strong cooperation between the government and private sector, increased public education, collaboration with existing players in the marine sector, and increased research and development, among others, were proposed for the development of the sector.

2.
Sci Rep ; 14(1): 3537, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38347029

ABSTRACT

This study extensively examined the impact of aluminium oxide (Al2O3) and titanium dioxide (TiO2) nanoparticles addition in the biodiesel fuel derived from Guizotia abyssinica (L.) oil. The assessment of fuel blends, which were created by combining nanoparticles and biodiesel was conducted using energy, exergy, and sustainability indices. The highest recorded power output of 2.81 kW was observed for the GAB20A engine operating at 1800 rpm. The experimental results revealed that the GAB20A exhibited the lowest fuel consumption, with a recorded value of 203 g/kWh, when operated at 1600 rpm among all the tested blend fuels. The blend GAB20A exhibited the highest level of energy efficiency at 1600 rpm of 29.5%, as determined by the study. Simultaneously, it was observed that GAB20 exhibited the lowest energy efficiency at 1200 rpm among all the blend fuels at 25%. The emission levels of nitrogen oxides (NOx) and carbon monoxide (CO) were observed to be quite low, although a little rise in carbon dioxide (CO2) was detected. For validation of results the artificial neural network (ANN) was used and an average of 1.703% difference in energy efficiency, 2.246% decrease in exergy efficiency, and 1.416% difference in sustainability index was found.

3.
Sci Rep ; 13(1): 16509, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37783749

ABSTRACT

The present investigation aims to examine the mechanical and durability properties of concrete that has been reinforced with a waste printed circuit board (WPCB) towards a low-carbon built environment. It assessed the fresh and hardened characteristics of the low-carbon concrete reinforced with WPCB fibres, after a curing period of 7 and 28 days. The evaluation was done by quantifying slump, compressive strength, split tensile strength, flexural strength, sorptivity, rapid, and acid tests. It further analysed eleven discrete concrete mixes with WPCB fibres at a weight percentage ranging from 1 to 5% in the cement mixture. The results indicate that incorporating WPCB fibre into concrete improves its mechanical strength. The results revealed that incorporating 5% WPCB fibre yielded the most favourable outcomes. The properties of WPCB fibre-reinforced concrete have been theoretically validated through Response Surface Methodology (RSM), which employs various statistical and mathematical tools to analyse the experimental data. The results derived from RSM were compared with the experimental results. It was found that the RSM model demonstrated a high level of accuracy (R2 ≥ 0.98) in validating the mechanical properties of WPCB fibre concrete. The statistical model exhibited no indication of prediction bias and demonstrated a statistically significant outcome, with a p-value below 0.5.

SELECTION OF CITATIONS
SEARCH DETAIL
...