Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 63(16): e202318377, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38282182

ABSTRACT

We highlight key contributions in the field of direct radical CAr- H (hetero)aromatic functionalization involving fluorinated radicals. A compilation of Functional Group Transfer Reagents and their diverse activation mechanisms leading to the release of radicals are discussed. The substrate scope for each radical is analyzed and classified into three categories according to the electronic properties of the substrates. Density functional theory computational analysis provides insights into the chemical reactivity of several fluorinated radicals through their electrophilicity and nucleophilicity parameters. Theoretical analysis of their reduction potentials also highlights the remarkable correlation between electrophilicity and oxidizing ability. It is also established that highly fluorinated radicals (e.g. ⋅OCF3) are capable of engaging in single-electron transfer (SET) processes rather than radical addition, which is in good agreement with experimental literature data. A reactivity scale, based on activation barrier of addition of these radicals to benzene is also elaborated using the high accuracy DLPNO-(U)CCSD(T) method.

2.
Angew Chem Int Ed Engl ; 62(28): e202300533, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37097203

ABSTRACT

Herein, we introduce an electrochemically assisted generation of nitryl radicals from ferric nitrate under mild reaction conditions using a simple setup with inexpensive graphite and stainless-steel electrodes. The mechanism of the reaction is supported by detailed spectroscopic and experimental studies. Powered by electricity and driven by electrons, the synthetic diversity of this reaction has been demonstrated through the development of highly efficient nitration protocols of various unsaturated hydrocarbons. In addition to a broad application area, these protocols are easy to scale for decagram quantities, and exhibit exceptional substrate generality and functional-group compatibility.

3.
Angew Chem Int Ed Engl ; 61(42): e202209143, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-35997088

ABSTRACT

The incorporation of the gem-difluoromethylene (CF2 ) group into organic frameworks is highly sought due to the influence of this unit on the physicochemical and pharmacological properties of molecules. Herein we report an operationally simple, mild, and switchable protocol to access various gem-difluoro compounds that employs chlorodifloroacetic anhydride (CDFAA) as a low-cost and versatile fluoroalkylating reagent. Detailed mechanistic studies revealed that electron-transfer photocatalysis triggers mesolytic cleavage of a C-Cl bond generating a gem-difluoroalkyl radical. In the presence of alkene, this radical species acts as a unique intermediate that, under solvent-controlled reaction conditions, delivers a wide range of gem-difluorinated γ-lactams, γ-lactones, and promotes oxy-perfluoroalkylation. These protocols are flow- and batch-scalable, possess excellent chemo- and regioselectivity, and can be used for the late-stage diversification of complex molecules.


Subject(s)
Alkenes , Anhydrides , Lactams , Lactones , Solvents
SELECTION OF CITATIONS
SEARCH DETAIL
...