Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
Analyst ; 149(13): 3661-3672, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38819086

ABSTRACT

Continuous-flow ventricular assist devices (CFVAD) and counterpulsation devices (CPD) are used to treat heart failure (HF). CFVAD can diminish pulsatility, but pulsatile modes have been implemented to increase vascular pulsatility. The effects of CFVAD in a pulsatile mode and CPD support on the function of endothelial cells (ECs) are yet to be investigated. In this study, two in vitro microfluidic models for culturing ECs are proposed to reproduce blood pressure (BP) and wall shear stress (WSS) on the arterial endothelium while using these medical devices. The layout and parameters of the two microfluidic systems were optimized based on the principle of hemodynamic similarity to efficiently simulate physiological conditions. Moreover, the unique design of the double-pump and double afterload systems could successfully reproduce the working mode of CPDs in an in vitro microfluidic system. The performance of the two systems was verified by numerical simulations and in vitro experiments. BP and WSS under HF, CFVAD in pulsatile modes, and CPD were reproduced accurately in the systems, and these induced signals improved the expression of Ca2+, NO, and reactive oxygen species in ECs, proving that CPD may be effective in normalizing endothelial function and replacing CFVAD to a certain extent to treat non-severe HF. This method offers an important tool for the study of cell mechanobiology and a key experimental basis for exploring the potential value of mechanical circulatory support devices in reducing adverse events and improving outcomes in the treatment of HF in the future.


Subject(s)
Heart-Assist Devices , Pulsatile Flow , Humans , Endothelial Cells/cytology , Reactive Oxygen Species/metabolism , Lab-On-A-Chip Devices , Stress, Mechanical , Human Umbilical Vein Endothelial Cells , Counterpulsation/instrumentation , Counterpulsation/methods , Nitric Oxide/metabolism
2.
Methods Mol Biol ; 2803: 61-74, 2024.
Article in English | MEDLINE | ID: mdl-38676885

ABSTRACT

Testing drugs in vivo and in vitro have been essential elements for the discovery of new therapeutics. Due to the recent advances in in vitro cell culture models, such as human-induced pluripotent stem cell-derived cardiomyocytes and 3D multicell type organoid culture methods, the detection of adverse cardiac events prior to human clinical trials has improved. However, there are still numerous therapeutics whose adverse cardiac effects are not detected until human trials due to the inability of these cell cultures to fully model the complex multicellular organization of an intact human myocardium. Cardiac tissue slices are a possible alternative solution. Myocardial slices are a 300-micron thin snapshot of the myocardium, capturing a section of the adult heart in a 1 × 1 cm section. Using a culture method that incorporates essential nutrients and electrical stimulation, tissue slices can be maintained in culture for 6 days with full viability and functionality. With the addition of mechanical stimulation and humoral cues, tissue slices can be cultured for 12 days. Here we provide detailed methods for how to culture cardiac tissue slices under continuous mechanical stimulation in the cardiac tissue culture model (CTCM) device. The CTCM incorporates four essential factors for maintaining tissue slices in culture for 12 days: mechanical stimulation, electrical stimulation, nutrients, and humoral cues. The CTCM can also be used to model disease conditions, such as overstretch-induced cardiac hypertrophy. The versatility of the CTCM illustrates its potential to be a medium-throughput screening platform for personalized drug testing.


Subject(s)
Myocardium , Myocytes, Cardiac , Tissue Culture Techniques , Humans , Myocardium/cytology , Myocardium/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/physiology , Tissue Culture Techniques/methods , Animals , Heart/physiology , Electric Stimulation , Stress, Mechanical
4.
Lab Chip ; 24(9): 2428-2439, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38625094

ABSTRACT

Rotary blood pumps (RBPs) operating at a constant speed generate non-physiologic blood pressure and flow rate, which can cause endothelial dysfunction, leading to adverse clinical events in peripheral blood vessels and other organs. Notably, pulsatile working modes of the RBP can increase vascular pulsatility to improve arterial endothelial function. However, the laws and related mechanisms of differentially regulating arterial endothelial function under different pulsatile working modes are still unclear. This knowledge gap hinders the optimal selection of the RBP working modes. To address these issues, this study developed a multi-element in vitro endothelial cell culture system (ECCS), which could realize in vitro cell culture effectively and accurately reproduce blood pressure, shear stress, and circumferential strain in the arterial endothelial microenvironment. Performance of this proposed ECCS was validated with numerical simulation and flow experiments. Subsequently, this study investigated the effects of four different pulsation frequency modes that change once every 1-4-fold cardiac cycles (80, 40, 80/3, and 20 cycles per min, respectively) of the RBP on the expression of nitric oxide (NO) and reactive oxygen species (ROS) in endothelial cells. Results indicated that the 2-fold and 3-fold cardiac cycles significantly increased the production of NO and prevented the excessive generation of ROS, potentially minimizing the occurrence of endothelial dysfunction and related adverse events during the RBP support, and were consistent with animal study findings. In general, this study may provide a scientific basis for the optimal selection of the RBP working modes and potential treatment options for heart failure.


Subject(s)
Cell Culture Techniques , Pulsatile Flow , Humans , Cell Culture Techniques/instrumentation , Hemodynamics , Reactive Oxygen Species/metabolism , Nitric Oxide/metabolism , Heart-Assist Devices , Endothelial Cells/cytology , Endothelial Cells/metabolism , Lab-On-A-Chip Devices , Equipment Design , Human Umbilical Vein Endothelial Cells/metabolism , Microfluidic Analytical Techniques/instrumentation , Cells, Cultured
5.
Comput Biol Med ; 169: 107788, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38091724

ABSTRACT

Continuous flow (CF) left ventricular assist devices (LVAD) operate at a constant speed mode, which could result in increased risk of adverse events due to reduced vascular pulsatility. Consequently, pump speed modulation algorithms have been proposed to augment vascular pulsatility. However, the quantitative local hemodynamic effects on the aorta when the pump is operating with speed modulation using different types of CF-LVADs are still under investigation. The computational fluid dynamics (CFD) study was conducted to quantitatively elucidate the hemodynamic effects on a clinical patient-specific aortic model under different speed patterns of CF-LVADs. Pressure distribution, wall shear stress (WSS), time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), relative residence time (RRT), and velocity were calculated to compare their differences at constant and pulsatile speeds under centrifugal and axial LVAD support. Results showed that pulse pressure on the aorta was significantly larger under pulsatile speed mode than that under constant speed mode for both CF-LVADs, indicating enhanced aorta pulsatility, as well as the higher peak blood flow velocity on some representative slices of aorta. Pulsatile speed modulation enhanced peak WSS compared to constant speed; high TAWSS region appeared near the branch of left common carotid artery and distal aorta regardless of speed modes and CF-LVADs but these regions also had low OSI; RRT was almost the same for all the cases. This study may provide a basis for the scientific and reasonable selection of the pulsatile speed patterns of CF-LVADs for treating heart failure patients.


Subject(s)
Heart Failure , Heart-Assist Devices , Humans , Hydrodynamics , Models, Cardiovascular , Pulsatile Flow/physiology , Hemodynamics/physiology
6.
Sci Rep ; 13(1): 17048, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37813914

ABSTRACT

Autism Spectrum Disorder (ASD) is characterized as a neurodevelopmental disorder with a heterogeneous nature, influenced by genetics and exhibiting diverse clinical presentations. In this study, we dissect Autism Spectrum Disorder (ASD) into its behavioral components, mirroring the diagnostic process used in clinical settings. Morphological features are extracted from magnetic resonance imaging (MRI) scans, found in the publicly available dataset ABIDE II, identifying the most discriminative features that differentiate ASD within various behavioral domains. Then, each subject is categorized as having severe, moderate, or mild ASD, or typical neurodevelopment (TD), based on the behavioral domains of the Social Responsiveness Scale (SRS). Through this study, multiple artificial intelligence (AI) models are utilized for feature selection and classifying each ASD severity and behavioural group. A multivariate feature selection algorithm, investigating four different classifiers with linear and non-linear hypotheses, is applied iteratively while shuffling the training-validation subjects to find the set of cortical regions with statistically significant association with ASD. A set of six classifiers are optimized and trained on the selected set of features using 5-fold cross-validation for the purpose of severity classification for each behavioural group. Our AI-based model achieved an average accuracy of 96%, computed as the mean accuracy across the top-performing AI models for feature selection and severity classification across the different behavioral groups. The proposed AI model has the ability to accurately differentiate between the functionalities of specific brain regions, such as the left and right caudal middle frontal regions. We propose an AI-based model that dissects ASD into behavioral components. For each behavioral component, the AI-based model is capable of identifying the brain regions which are associated with ASD as well as utilizing those regions for diagnosis. The proposed system can increase the speed and accuracy of the diagnostic process and result in improved outcomes for individuals with ASD, highlighting the potential of AI in this area.


Subject(s)
Autism Spectrum Disorder , Humans , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/pathology , Artificial Intelligence , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging/methods , Machine Learning
7.
J Biomech Eng ; 145(11)2023 11 01.
Article in English | MEDLINE | ID: mdl-37535439

ABSTRACT

Head-flow HQ curves for a Fontan cavopulmonary assist device (CPAD) were measured using a blood surrogate in a mock circulatory loop and simulated with various computational fluid dynamics (CFD) models. The tests benchmarked the CFD tools for further enhancement of the CPAD design. Recommended Reynolds-Averaged Navier-Stokes (RANS) CFD approaches for the development of conventional ventricular assist devices (VAD) were found to have shortcomings when applied to the Fontan CPAD, which is designed to neutralize off-condition obstruction risks that could contribute to a major adverse event. The no-obstruction condition is achieved with a von Karman pump, utilizing large clearances and small blade heights, which challenge conventional VAD RANS-based CFD hemodynamic simulations. High-fidelity large eddy simulation (LES) is always recommended; however, this may be cost-inhibitive for optimization studies in commercial settings, thus the reliance on RANS models. This study compares head and power predictions of various RANS turbulence models, employing experimental measurements and LES results as a basis for comparison. The models include standard k-ϵ, re-normalization group k-ϵ, realizable k-ϵ, shear stress transport (SST) k-ω, SST with transitional turbulence, and Generalized k-ω. For the pressure head predictions, it was observed that the standard k-ϵ model provided far better agreement with experiment. For the rotor torque, k-ϵ predictions were 30% lower than LES, while the SST and LES torque values were near identical. For the Fontan CPAD, the findings support using LES for the final design simulations, k-ϵ model for head and general flow simulation, and SST for power, shear stress, hemolysis, and thrombogenicity predictions.


Subject(s)
Heart-Assist Devices , Hydrodynamics , Computer Simulation , Hemodynamics , Models, Cardiovascular
8.
Sci Rep ; 13(1): 12668, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37542111

ABSTRACT

Patients with single ventricle defects undergoing the Fontan procedure eventually face Fontan failure. Long-term cavopulmonary assist devices using rotary pump technologies are currently being developed as a subpulmonary power source to prevent and treat Fontan failure. Low hydraulic resistance is a critical safety requirement in the event of pump failure (0 RPM) as a modest 2 mmHg cavopulmonary pressure drop can compromise patient hemodynamics. The goal of this study is therefore to assess the passive performance of a viscous impeller pump (VIP) we are developing for Fontan patients, and validate flow simulations against in-vitro data. Two different blade heights (1.09 mm vs 1.62 mm) and a blank housing model were tested using a mock circulatory loop (MCL) with cardiac output ranging from 3 to 11 L/min. Three-dimensional flow simulations were performed and compared against MCL data. In-silico and MCL results demonstrated a pressure drop of < 2 mmHg at a cardiac output of 7 L/min for both blade heights. There was good agreement between simulation and MCL results for pressure loss (mean difference - 0.23 mmHg 95% CI [0.24-0.71]). Compared to the blank housing model, low wall shear stress area and oscillatory shear index on the pump surface were low, and mean washout times were within 2 s. This study demonstrated the low resistance characteristic of current VIP designs in the failed condition that results in clinically acceptable minimal pressure loss without increased washout time as compared to a blank housing model under normal cardiac output in Fontan patients.


Subject(s)
Fontan Procedure , Fontan Procedure/instrumentation , Fontan Procedure/methods , Lung , Cardiac Output , Humans , Heart Diseases/surgery
9.
Res Sq ; 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36909557

ABSTRACT

Patients with single ventricle defects undergoing the Fontan procedure eventually face Fontan failure. Long-term cavopulmonary assist devices using rotary pump technologies are currently being developed as a subpulmonary power source to prevent and treat Fontan failure. Low hydraulic resistance is a critical safety requirement in the event of pump failure (0 RPM) as a modest 2 mmHg cavopulmonary pressure drop can compromise patient hemodynamics. The goal of this study is therefore to assess the passive performance for a viscous impeller pump (VIP) we are developing for Fontan patients, and validate flow simulations against in-vitro data. Two different blade heights (1.09 mm vs 1.62 mm) and a blank housing model were tested using a mock circulatory loop (MCL) with cardiac output ranging from 3 to 11 L/min. Three-dimensional flow simulations were performed and compared against MCL data. In-silico and MCL results demonstrated a clinically insignificant pressure drop of $<$ 2 mmHg at a cardiac output of 7 L/min for both blade heights. There was good agreement between simulation and MCL results for pressure loss (mean difference -0.23 mmHg 95% CI [0.24 -0.71]). Compared to the blank housing model, low wall shear stress area and oscillatory shear index on the pump surface were low, and mean washout times were within 2 seconds. This study demonstrated the low resistance characteristic of current VIP designs in the failed condition that results in clinically acceptable minimal pressure loss with low risk of thrombosis.

10.
Article in English | MEDLINE | ID: mdl-36936779

ABSTRACT

Continuous flow rotary blood pumps (RBP) operating clinically at constant rotational speeds cannot match cardiac demand during varying physical activities, are susceptible to suction, diminish vascular pulsatility, and have an increased risk of adverse events. A sensorless, physiologic feedback control strategy for RBP was developed to mitigate these limitations. The proposed algorithm used intrinsic pump speed to obtain differential pump speed (ΔRPM). The proposed gain-scheduled proportional-integral controller, switching of setpoints between a higher pump speed differential setpoint (ΔRPM Hr ) and a lower pump speed differential setpoint (ΔRPM Lr ), generated pulsatility and physiologic perfusion, while avoiding suction. The switching between ΔRPM Hr and ΔRPM Lr setpoints occurred when the measured ΔRPM reached the pump differential reference setpoint. In-silico tests were implemented to assess the proposed algorithm during rest, exercise, a rapid 3-fold pulmonary vascular resistance increase, rapid change from exercise to rest, and compared with maintaining a constant pump speed setpoint. The proposed control algorithm augmented aortic pressure pulsatility to over 35 mmHg during rest and around 30 mmHg during exercise. Significantly, ventricular suction was avoided, and adequate cardiac output was maintained under all simulated conditions. The performance of the sensorless algorithm using estimation was similar to the performance of sensor-based method. This study demonstrated that augmentation of vascular pulsatility was feasible while avoiding ventricular suction and providing physiological pump outflows. Augmentation of vascular pulsatility can minimize adverse events that have been associated with diminished pulsatility. Mock circulation and animal studies would be conducted to validate these results.

11.
ASAIO J ; 69(6): 569-575, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37000917

ABSTRACT

Nonsurgical bleeding occurs in a significant proportion of patients implanted with continuous-flow ventricular assist devices (CF-VADs) and is associated with nonphysiologic flow with diminished pulsatility. An in vitro vascular pulse perfusion model seeded with adult human aortic endothelial cells (HAECs) was used to identify biomarkers sensitive to changes in pulsatility. Diminished pulsatility resulted in an ~45% decrease in von Willebrand factor (vWF) levels from 9.80 to 5.32 ng/ml (n = 5, p < 0.05) and a threefold increase in angiopoietin-2 (ANGPT-2) levels from 775.29 to 2471.93 pg/ml (n = 5, p < 0.05) in cultured HAECs. These changes are in agreement with evaluation of patient blood samples obtained pre-CF-VAD implant and 30-day postimplant: a decrease in plasma vWF level by 50% from ~45.59 to ~22.49 µg/ml (n = 15, p < 0.01) and a 64% increase in plasma ANGPT-2 level from 7,073 to 11,615 pg/ml (n = 8, p < 0.05). This study identified vWF and ANGPT-2 as highly sensitive to changes in pulsatility, in addition to interleukin-6 (IL-6), IL-8, and tumor necrosis-α (TNF-α). These biomarkers may help determine the optimal level of pulsatility and help identify patients at high risk of nonsurgical bleeding.


Subject(s)
Heart-Assist Devices , von Willebrand Diseases , Adult , Humans , von Willebrand Factor , Endothelial Cells , Heart-Assist Devices/adverse effects , Angiopoietin-2 , Hemorrhage/etiology , Biomarkers , von Willebrand Diseases/etiology
12.
Cells Tissues Organs ; 212(3): 272-284, 2023.
Article in English | MEDLINE | ID: mdl-35344966

ABSTRACT

Continuous flow ventricular assist device (CFVAD) support in advanced heart failure patients causes diminished pulsatility, which has been associated with adverse events including gastrointestinal bleeding, end organ failure, and arteriovenous malformation. Recently, pulsatility augmentation by pump speed modulation has been proposed as a means to minimize adverse events. Pulsatility primarily affects endothelial and smooth muscle cells in the vasculature. To study the effects of pulsatility and pulse modulation using CFVADs, we have developed a microfluidic co-culture model with human aortic endothelial (ECs) and smooth muscle cells (SMCs) that can replicate physiologic pressures, flows, shear stresses, and cyclical stretch. The effects of pulsatility and pulse frequency on ECs and SMCs were evaluated during (1) normal pulsatile flow (120/80 mmHg, 60 bpm), (2) diminished pulsatility (98/92 mmHg, 60 bpm), and (3) low cyclical frequency (115/80 mmHg, 30 bpm). Shear stresses were estimated using computational fluid dynamics (CFD) simulations. While average shear stresses (4.2 dynes/cm2) and flows (10.1 mL/min) were similar, the peak shear stresses for normal pulsatile flow (16.9 dynes/cm2) and low cyclic frequency (19.5 dynes/cm2) were higher compared to diminished pulsatility (6.45 dynes/cm2). ECs and SMCs demonstrated significantly lower cell size with diminished pulsatility compared to normal pulsatile flow. Low cyclical frequency resulted in normalization of EC cell size but not SMCs. SMCs size was higher with low frequency condition compared to diminished pulsatility but did not normalize to normal pulsatility condition. These results may suggest that pressure amplitude augmentation may have a greater effect in normalizing ECs, while both pressure amplitude and frequency may be required to normalize SMCs morphology. The co-culture model may be an ideal platform to study flow modulation strategies.


Subject(s)
Heart-Assist Devices , Humans , Coculture Techniques , Myocytes, Smooth Muscle
13.
Artif Organs ; 47(4): 640-648, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36404709

ABSTRACT

BACKGROUND: Patients on continuous flow ventricular assist devices (CF-VADs) are at high risk for the development of Acquired von-Willebrand Syndrome (AVWS) and non-surgical bleeding. von Willebrand Factor (vWF) plays an essential role in maintaining hemostasis via platelet binding to the damaged endothelium to facilitate coagulation. In CF-VAD patients, degradation of vWF into low MW multimers that are inefficient in facilitating coagulation occurs and has been primarily attributed to the supraphysiological shear stress associated with the CF-VAD impeller. METHODS: In this review, we evaluate information from the literature regarding the unraveling behavior of surface-immobilized vWF under pulsatile and continuous flow pertaining to: (A) the process of arterial endothelial vWF production and release into circulation, (B) the critical shear stress required to unravel surface bound versus soluble vWF which leads to degradation, and (C) the role of pulsatility in on the production and degradation of vWF. RESULTS AND CONCLUSION: Taken together, these data suggests that the loss of pulsatility and its impact on arterial endothelial cells plays an important role in the production, release, unraveling, and proteolytic degradation of vWF into low MW multimers, contributing to the development of AVWS. Restoration of pulsatility can potentially mitigate this issue by preventing AVWS and minimizing the risk of non-surgical bleeding.


Subject(s)
Heart-Assist Devices , von Willebrand Diseases , Humans , von Willebrand Factor/metabolism , Heart-Assist Devices/adverse effects , Endothelial Cells/metabolism , Hemorrhage , Endothelium/metabolism
14.
Sensors (Basel) ; 22(20)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36298403

ABSTRACT

Sensors used to diagnose, monitor or treat diseases in the medical domain are known as medical sensors [...].


Subject(s)
Computers , Diagnosis, Computer-Assisted
15.
Cancers (Basel) ; 14(20)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36291803

ABSTRACT

Bladder cancer (BC) is the 10th most common cancer globally and has a high mortality rate if not detected early and treated promptly. Non-muscle-invasive BC (NMIBC) is a subclassification of BC associated with high rates of recurrence and progression. Current tools for predicting recurrence and progression on NMIBC use scoring systems based on clinical and histopathological markers. These exclude other potentially useful biomarkers which could provide a more accurate personalized risk assessment. Future trends are likely to use artificial intelligence (AI) to enhance the prediction of recurrence in patients with NMIBC and decrease the use of standard clinical protocols such as cystoscopy and cytology. Here, we provide a comprehensive survey of the most recent studies from the last decade (N = 70 studies), focused on the prediction of patient outcomes in NMIBC, particularly recurrence, using biomarkers such as radiomics, histopathology, clinical, and genomics. The value of individual and combined biomarkers is discussed in detail with the goal of identifying future trends that will lead to the personalized management of NMIBC.

16.
Commun Biol ; 5(1): 934, 2022 09 09.
Article in English | MEDLINE | ID: mdl-36085302

ABSTRACT

There is need for a reliable in vitro system that can accurately replicate the cardiac physiological environment for drug testing. The limited availability of human heart tissue culture systems has led to inaccurate interpretations of cardiac-related drug effects. Here, we developed a cardiac tissue culture model (CTCM) that can electro-mechanically stimulate heart slices with physiological stretches in systole and diastole during the cardiac cycle. After 12 days in culture, this approach partially improved the viability of heart slices but did not completely maintain their structural integrity. Therefore, following small molecule screening, we found that the incorporation of 100 nM tri-iodothyronine (T3) and 1 µM dexamethasone (Dex) into our culture media preserved the microscopic structure of the slices for 12 days. When combined with T3/Dex treatment, the CTCM system maintained the transcriptional profile, viability, metabolic activity, and structural integrity for 12 days at the same levels as the fresh heart tissue. Furthermore, overstretching the cardiac tissue induced cardiac hypertrophic signaling in culture, which provides a proof of concept for the ability of the CTCM to emulate cardiac stretch-induced hypertrophic conditions. In conclusion, CTCM can emulate cardiac physiology and pathophysiology in culture for an extended time, thereby enabling reliable drug screening.


Subject(s)
Biomimetics , Heart , Cardiomegaly , Culture Media , Humans , Systole
17.
Cells Tissues Organs ; 211(3): 324-334, 2022.
Article in English | MEDLINE | ID: mdl-33631743

ABSTRACT

Cardiopulmonary bypass (CPB) results in short-term (3-5 h) exposure to flow with diminished pulsatility often referred to as "continuous flow". It is unclear if short-term exposure to continuous flow influences endothelial function, particularly, changes in levels of pro-inflammatory and pro-angiogenic cytokines. In this study, we used the endothelial cell culture model (ECCM) to evaluate if short-term (≤5 h) reduction in pulsatility alters levels of pro-inflammatory/pro-angiogenic cytokine levels. Human aortic endothelial cells (HAECs) cultured within the ECCM provide a simple model to evaluate endothelial cell function in the absence of confounding factors. HAECs were maintained under normal pulsatile flow for 24 h and then subjected to continuous flow (diminished pulsatile pressure and flow) as observed during CPB for 5 h. The ECCM replicated pulsatility and flow morphologies associated with normal hemodynamic status and CPB as seen with clinically used roller pumps. Levels of angiopoietin-2 (ANG-2), vascular endothelial growth factor-A (VEGF-A), and hepatocyte growth factor were lower in the continuous flow group in comparison to the pulsatile flow group whereas the levels of endothelin-1 (ET-1), granulocyte colony stimulating factor, interleukin-8 (IL-8) and placental growth factor were higher in the continuous flow group in comparison to the pulsatile flow group. Immunolabelling of HAECs subjected to continuous flow showed a decrease in expression of ANG-2 and VEGF-A surface receptors, tyrosine protein kinase-2 and Fms-related receptor tyrosine kinase-1, respectively. Given that the 5 h exposure to continuous flow is insufficient for transcriptional regulation, it is likely that pro-inflammatory/pro-angiogenic signaling observed was due to signaling molecules stored in Weible-Palade bodies (ET-1, IL-8, ANG-2) and via HAEC binding/uptake of soluble factors in media. These results suggest that even short-term exposure to continuous flow can potentially activate pro-inflammatory/pro-angiogenic signaling in cultured HAECs and pulsatile flow may be a successful strategy in reducing the undesirable sequalae following continuous flow CPB.


Subject(s)
Cardiopulmonary Bypass , Endothelial Cells , Cardiopulmonary Bypass/adverse effects , Female , Humans , Interleukin-8 , Placenta Growth Factor , Vascular Endothelial Growth Factor A
18.
Artif Organs ; 46(5): 887-898, 2022 May.
Article in English | MEDLINE | ID: mdl-34866200

ABSTRACT

BACKGROUND: Patients with continuous flow ventricular assist devices (CF-VADs) are at high risk for non-surgical bleeding, speculated to associate with the loss of pulsatility following CF-VAD placement. It has been hypothesized that continuous shear stress causes elongation and increased enzymatic degradation of von Willebrand Factor (vWF), a key player in thrombus formation at sites of vascular damage. However, the role of loss of pulsatility on the unravelling behavior of vWF has not been widely explored. METHODS: vWF molecules were immobilized on the surface of microfluidic devices and subjected to various pulsatile flow profiles, including continuous flow and pulsatile flow of different magnitudes, dQ/dt (i.e., first derivative of flow rate) of pulsatility and pulse frequencies to mimic in vivo shear flow environments with and without CF-VAD support. VWF elongation was observed using total internal reflection fluorescence (TIRF) microscopy. Besides, the vWF level is measured from the patients' blood sample before and after CF-VAD implantation from a clinical perspective. To our knowledge, this work is the first in providing direct, visual observation of single vWF molecule extension under controlled-pulsatile shear flow. RESULTS: Unravelling of vWF (total sample size n ~ 200 molecules) is significantly reduced under pulsatile flow (p < 0.01) compared to continuous flow. An increase in the magnitude of pulsatility further reduces unravelling lengths, while lower frequency of pulsatility (20 vs. 60 pulses per min) does not have a major effect on the maximum or minimum unravelling lengths. Evaluation of CF-VAD patient blood samples (n = 13) demonstrates that vWF levels decreased by ~40% following CF-VAD placement (p < 0.01), which correlates to single-molecule observations from a clinical point of view. CONCLUSIONS: Pulsatile flow reduces unfolding of vWF compared to continuous flow and a lower pulse frequency of 20 pulses/minute yielded comparable vWF unfolding to 60 pulses/minute. These findings could shed light on non-surgical bleeding associated with the loss of pulsatility following CF-VAD placement.


Subject(s)
Heart-Assist Devices , Thrombosis , Heart-Assist Devices/adverse effects , Hemorrhage/etiology , Humans , Pulsatile Flow , Thrombosis/etiology , von Willebrand Factor/metabolism
19.
Diagnostics (Basel) ; 11(12)2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34943550

ABSTRACT

In developed countries, age-related macular degeneration (AMD), a retinal disease, is the main cause of vision loss in the elderly. Optical Coherence Tomography (OCT) is currently the gold standard for assessing individuals for initial AMD diagnosis. In this paper, we look at how OCT imaging can be used to diagnose AMD. Our main aim is to examine and compare automated computer-aided diagnostic (CAD) systems for diagnosing and grading of AMD. We provide a brief summary, outlining the main aspects of performance assessment and providing a basis for current research in AMD diagnosis. As a result, the only viable alternative is to prevent AMD and stop both this devastating eye condition and unwanted visual impairment. On the other hand, the grading of AMD is very important in order to detect early AMD and prevent patients from reaching advanced AMD disease. In light of this, we explore the remaining issues with automated systems for AMD detection based on OCT imaging, as well as potential directions for diagnosis and monitoring systems based on OCT imaging and telemedicine applications.

20.
Sensors (Basel) ; 21(20)2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34696104

ABSTRACT

Rotary left ventricular assist devices (LVAD) have emerged as a long-term treatment option for patients with advanced heart failure. LVADs need to maintain sufficient physiological perfusion while avoiding left ventricular myocardial damage due to suction at the LVAD inlet. To achieve these objectives, a control algorithm that utilizes a calculated suction index from measured pump flow (SIMPF) is proposed. This algorithm maintained a reference, user-defined SIMPF value, and was evaluated using an in silico model of the human circulatory system coupled to an axial or mixed flow LVAD with 5-10% uniformly distributed measurement noise added to flow sensors. Efficacy of the SIMPF algorithm was compared to a constant pump speed control strategy currently used clinically, and control algorithms proposed in the literature including differential pump speed control, left ventricular end-diastolic pressure control, mean aortic pressure control, and differential pressure control during (1) rest and exercise states; (2) rapid, eight-fold augmentation of pulmonary vascular resistance for (1); and (3) rapid change in physiologic states between rest and exercise. Maintaining SIMPF simultaneously provided sufficient physiological perfusion and avoided ventricular suction. Performance of the SIMPF algorithm was superior to the compared control strategies for both types of LVAD, demonstrating pump independence of the SIMPF algorithm.


Subject(s)
Heart Failure , Heart-Assist Devices , Heart Failure/therapy , Heart Ventricles , Humans , Models, Cardiovascular , Suction
SELECTION OF CITATIONS
SEARCH DETAIL
...