Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Infect Dis ; 76(3): e540-e543, 2023 02 08.
Article in English | MEDLINE | ID: mdl-35686436

ABSTRACT

We enrolled arriving international air travelers in a severe acute respiratory syndrome coronavirus 2 genomic surveillance program. We used molecular testing of pooled nasal swabs and sequenced positive samples for sublineage. Traveler-based surveillance provided early-warning variant detection, reporting the first US Omicron BA.2 and BA.3 in North America.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Airports , COVID-19/diagnosis , Genomics
2.
Cell Host Microbe ; 29(11): 1709-1723.e5, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34637780

ABSTRACT

We present predictive models for comprehensive systems analysis of Clostridioides difficile, the etiology of pseudomembranous colitis. By leveraging 151 published transcriptomes, we generated an EGRIN model that organizes 90% of C. difficile genes into a transcriptional regulatory network of 297 co-regulated modules, implicating genes in sporulation, carbohydrate transport, and metabolism. By advancing a metabolic model through addition and curation of metabolic reactions including nutrient uptake, we discovered 14 amino acids, diverse carbohydrates, and 10 metabolic genes as essential for C. difficile growth in the intestinal environment. Finally, we developed a PRIME model to uncover how EGRIN-inferred combinatorial gene regulation by transcription factors, such as CcpA and CodY, modulates essential metabolic processes to enable C. difficile growth relative to commensal colonization. The C. difficile interactive web portal provides access to these model resources to support collaborative systems-level studies of context-specific virulence mechanisms in C. difficile.


Subject(s)
Clostridioides difficile , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Clostridioides , Clostridioides difficile/genetics , Gene Expression Regulation, Bacterial , Metabolic Networks and Pathways/genetics , Systems Analysis
3.
Cell Host Microbe ; 29(11): 1693-1708.e7, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34637781

ABSTRACT

Leveraging systems biology approaches, we illustrate how metabolically distinct species of Clostridia protect against or worsen Clostridioides difficile infection in mice by modulating the pathogen's colonization, growth, and virulence to impact host survival. Gnotobiotic mice colonized with the amino acid fermenter Paraclostridium bifermentans survive infection with reduced disease severity, while mice colonized with the butyrate-producer, Clostridium sardiniense, succumb more rapidly. Systematic in vivo analyses revealed how each commensal alters the gut-nutrient environment to modulate the pathogen's metabolism, gene regulatory networks, and toxin production. Oral administration of P. bifermentans rescues conventional, clindamycin-treated mice from lethal C. difficile infection in a manner similar to that of monocolonized animals, thereby supporting the therapeutic potential of this commensal species. Our findings lay the foundation for mechanistically informed therapies to counter C. difficile disease using systems biology approaches to define host-commensal-pathogen interactions in vivo.


Subject(s)
Clostridiales/physiology , Clostridioides difficile/pathogenicity , Clostridium Infections/microbiology , Clostridium Infections/therapy , Clostridium/physiology , Symbiosis , Amino Acids/metabolism , Animals , Arginine/metabolism , Butyrates/metabolism , Cecum/metabolism , Cecum/microbiology , Clostridiales/growth & development , Clostridioides difficile/genetics , Clostridioides difficile/physiology , Clostridium/growth & development , Fermentation , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Gene Regulatory Networks , Germ-Free Life , Mice , Severity of Illness Index , Systems Biology , Virulence
4.
mSphere ; 2(1)2017.
Article in English | MEDLINE | ID: mdl-28217744

ABSTRACT

Clostridium difficile is an important nosocomial pathogen and the leading cause of hospital-acquired diarrhea. Antibiotic use is the primary risk factor for the development of C. difficile-associated disease because it disrupts normally protective gut flora and enables C. difficile to colonize the colon. C. difficile damages host tissue by secreting toxins and disseminates by forming spores. The toxin-encoding genes, tcdA and tcdB, are part of a pathogenicity locus, which also includes the tcdR gene that codes for TcdR, an alternate sigma factor that initiates transcription of tcdA and tcdB genes. We created a tcdR mutant in epidemic-type C. difficile strain R20291 in an attempt to identify the global role of tcdR. A site-directed mutation in tcdR affected both toxin production and sporulation in C. difficile R20291. Spores of the tcdR mutant were more heat sensitive than the wild type (WT). Nearly 3-fold more taurocholate was needed to germinate spores from the tcdR mutant than to germinate the spores prepared from the WT strain. Transmission electron microscopic analysis of the spores also revealed a weakly assembled exosporium on the tcdR mutant spores. Accordingly, comparative transcriptome analysis showed many differentially expressed sporulation genes in the tcdR mutant compared to the WT strain. These data suggest that regulatory networks of toxin production and sporulation in C. difficile strain R20291 are linked with each other. IMPORTANCEC. difficile infects thousands of hospitalized patients every year, causing significant morbidity and mortality. C. difficile spores play a pivotal role in the transmission of the pathogen in the hospital environment. During infection, the spores germinate, and the vegetative bacterial cells produce toxins that damage host tissue. Thus, sporulation and toxin production are two important traits of C. difficile. In this study, we showed that a mutation in tcdR, the toxin gene regulator, affects both toxin production and sporulation in epidemic-type C. difficile strain R20291.

SELECTION OF CITATIONS
SEARCH DETAIL
...