Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 10(1): 21681, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33303846

ABSTRACT

Organisms have evolved various physiological mechanisms to cope with unfavourable environmental conditions. The ability to tolerate non-optimal thermal conditions can be substantially improved by acclimation. In this study, we examined how an early-life acclimation to different temperatures (19 °C, 25 °C and 29 °C) influences thermal reaction norms for energy stores in Drosophila adults. Our results show that acclimation temperature has a significant effect on the amount of stored fat and glycogen (and their relative changes) and the optimal temperature for their accumulation. Individuals acclimated to 19 °C had, on average, more energy reserves than flies that were initially maintained at 25 °C or 29 °C. In addition, acclimation caused a shift in optimal temperature for energy stores towards acclimation temperature. We also detected significant population differences in this response. The effect of acclimation on the optimal temperature for energy stores was more pronounced in flies from the temperate climate zone (Slovakia) than in individuals from the tropical zone (India). Overall, we found that the acclimation effect was stronger after acclimation to low (19 °C) than to high (29 °C) temperature. The observed sensitivity of thermal reaction norms for energy reserves to acclimation temperature can have important consequences for surviving periods of food scarcity, especially at suboptimal temperatures.


Subject(s)
Acclimatization/physiology , Drosophila/metabolism , Drosophila/physiology , Energy Metabolism/physiology , Temperature , Animals , Glycogen/metabolism , India , Slovakia
2.
BMC Evol Biol ; 20(1): 93, 2020 07 29.
Article in English | MEDLINE | ID: mdl-32727355

ABSTRACT

BACKGROUND: The adaptive significance of phenotypic changes elicited by environmental conditions experienced early in life has long attracted attention in evolutionary biology. In this study, we used Drosophila melanogaster to test whether the developmental diet produces phenotypes better adapted to cope with similar nutritional conditions later in life. To discriminate among competing hypotheses on the underlying nature of developmental plasticity, we employed a full factorial design with several developmental and adult diets. Specifically, we examined the effects of early- and late-life diets (by varying their yeast and sugar contents) on reproductive fitness and on the amount of energy reserves (fat and glycogen) in two wild-caught populations. RESULTS: We found that individuals that had developed on either low-yeast or high-sugar diet showed decreased reproductive performance regardless of their adult nutritional environment. The lower reproductive fitness might be caused by smaller body size and reduced ovariole number. Overall, these results are consistent with the silver spoon concept, which posits that development in a suboptimal environment negatively affects fitness-associated traits. On the other hand, the higher amount of energy reserves (fat) in individuals that had developed in a suboptimal environment might represent either an adaptive response or a side-effect of compensatory feeding. CONCLUSION: Our findings suggest that the observed differences in the adult physiology induced by early-life diet likely result from inevitable and general effects of nutrition on the development of reproductive and metabolic organs, rather than from adaptive mechanisms.


Subject(s)
Diet , Drosophila melanogaster/metabolism , Drosophila melanogaster/physiology , Adipose Tissue/metabolism , Animals , Body Size , Energy Metabolism , Female , Fertility , Genetic Fitness , Glycogen/metabolism , Male , Phenotype , Reproduction , Sugars/analysis , Yeasts
3.
J Exp Biol ; 222(Pt 10)2019 05 20.
Article in English | MEDLINE | ID: mdl-31064855

ABSTRACT

Whether the character of developmental plasticity is adaptive or non-adaptive has often been a matter of controversy. Although thermal developmental plasticity has been studied in Drosophila for several traits, it is not entirely clear how it affects reproductive fitness. We, therefore, investigated how developmental temperature affects reproductive performance (early fecundity and egg-to-adult viability) of wild-caught Drosophila melanogaster We tested competing hypotheses on the character of developmental thermal plasticity using a full-factorial design with three developmental and adulthood temperatures within the natural thermal range of this species. To account for potential intraspecific differences, we examined flies from tropical (India) and temperate (Slovakia) climate zones. Our results show that flies from both populations raised at an intermediate developmental temperature (25°C) have comparable or higher early fecundity and fertility at all tested adulthood temperatures, while lower (17°C) or higher developmental temperatures (29°C) did not entail any advantage under the tested thermal regimes. Importantly, the superior thermal performance of flies raised at 25°C is apparent even after taking two traits positively associated with reproductive output into account: body size and ovariole number. Thus, in D. melanogaster, development at a given temperature does not necessarily provide any advantage in this thermal environment in terms of reproductive fitness. Our findings strongly support the optimal developmental temperature hypothesis, which states that in different thermal environments, the highest fitness is achieved when an organism is raised at its optimal developmental temperature.


Subject(s)
Cold Temperature , Drosophila melanogaster/physiology , Genetic Fitness , Hot Temperature , Animals , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , India , Reproduction , Slovakia
SELECTION OF CITATIONS
SEARCH DETAIL