Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 226
Filter
1.
Clin Dysmorphol ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38856641

ABSTRACT

Camptodactyly-arthropathy-coxa vara-pericarditis (CACP) syndrome (MIM# 208250) is a rare monogenic disorder, characterized by early onset of camptodactyly, progressive coxa vara, bilateral arthropathy and constrictive pericarditis. The syndrome is caused by biallelic loss-of-function variants in PRG4. Deficiency of PRG4 results in progressive worsening of joint deformity with age. Thirteen individuals with CACP syndrome from eight consanguineous Indian families were evaluated. We used exome sequencing to elucidate disease-causing variants in all the probands. These variants were further validated and segregated by Sanger sequencing, confirming the diagnosis of CACP syndrome in them. Seven females and six males aged 2-23 years were studied. Camptodactyly (13/13), coxa vara (11/13), short femoral neck (11/13) and arthritis in large joints (12/13) [wrists (11/13), ankle (11/13), elbow (10/13) and knee (10/13)] were observed commonly. Five novel disease-causing variants (c.3636G>T, c.1935del, c.1134dup, c.1699del and c.962T>A) and two previously reported variants (c.1910_1911del and c.2816_2817del) were identified in homozygous state in PRG4. We describe the phenotype and mutations in one of the large cohorts of patients with CACP syndrome, from India.

2.
Eur J Hum Genet ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816490

ABSTRACT

The sodium-dependent multivitamin transporter encoded by SLC5A6 is responsible for uptake of biotin, pantothenic acid, and α-lipoic acid. Thirteen individuals from eight families are reported with pathogenic biallelic SLC5A6 variants. Phenotype ranges from multisystem metabolic disorder to childhood-onset peripheral motor neuropathy. We report three additional affected individuals with biallelic SLC5A6 variants. In Family A, a male proband (AII:1) presenting in early childhood with gross motor regression, motor axonal neuropathy, recurrent cytopenia and infections, and failure to thrive was diagnosed at 12 years of age via genome sequencing (GS) with a paternal NM_021095.4:c.393+2T>C variant and a maternal c.1285A>G p.(Ser429Gly) variant. An uncle with recurrent cytopenia and peripheral neuropathy was subsequently found to have the same genotype. We also report an unrelated female with peripheral neuropathy homozygous for the c.1285A>G p.(Ser429Gly) recurrent variant identified in seven reported cases, including this study. RT-PCR studies on blood mRNA from AII:1 showed c.393+2T>C caused mis-splicing with all canonically spliced transcripts in AII:1 containing the c.1285A>G variant. SLC5A6 mRNA expression in AII:1 fibroblasts was ~50% of control levels, indicative of nonsense-mediated decay of mis-spliced transcripts. Biotin uptake studies on AII:1 fibroblasts, expressing the p.(Ser429Gly) variant, showed an ~90% reduction in uptake compared to controls. Targeted treatment of AII:1 with biotin, pantothenic acid, and lipoic acid resulted in clinical improvement. Health Economic analyses showed implementation of GS as an early investigation could have saved $ AUD 105,988 and shortened diagnostic odyssey and initiation of treatment by up to 7 years.

3.
Eur J Hum Genet ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702430

ABSTRACT

Orofaciodigital syndrome is a distinctive subtype of skeletal ciliopathies. Disease-causing variants in the genes encoding the CPLANE complex result in a wide variety of skeletal dysplasia with disturbed ciliary functions. The phenotypic spectrum includes orofaciodigital syndrome and short rib polydactyly syndrome. FUZ, as a part of the CPLANE complex, is involved in intraflagellar vesicular trafficking within primary cilia. Previously, the variants, c.98_111+9del and c.851G>T in FUZ were identified in two individuals with a skeletal ciliopathy, manifesting digital anomalies (polydactyly, syndactyly), orofacial cleft, short ribs and cardiac defects. Here, we present two novel variants, c.601G>A and c.625_636del in biallelic state, in two additional subjects exhibiting phenotypic overlap with the previously reported cases. Our findings underscore the association between biallelic loss of function variants in FUZ and skeletal ciliopathy akin to orofaciodigital syndrome.

4.
Am J Med Genet A ; 194(8): e63601, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38562122

ABSTRACT

Biallelic variants in RSPRY1 have been found to result in spondyloepimetaphyseal dysplasia. Two siblings presenting with short stature, facial dysmorphism, progressive vertebral defects, small epiphysis, cupping and fraying of metaphyses, brachydactyly, and short metatarsals harbored a homozygous missense variant c.1652G>A;p.(Cys551Tyr) in the RSPRY1 gene. The phenotype in our patients resembles spondyloepimetaphyseal dysplasia, Faden-Alkuraya type. Thus, our study provides further evidence to support the association of RSPRY1 variants with spondyloepimetaphyseal dysplasia. We observed joint dislocation as a novel clinical feature of this condition.


Subject(s)
Osteochondrodysplasias , Phenotype , Siblings , Humans , Osteochondrodysplasias/genetics , Osteochondrodysplasias/pathology , Osteochondrodysplasias/diagnosis , Female , Mutation, Missense/genetics , Child , Pedigree , Homozygote , Mutation/genetics
5.
Nat Commun ; 15(1): 1640, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388531

ABSTRACT

THOC6 variants are the genetic basis of autosomal recessive THOC6 Intellectual Disability Syndrome (TIDS). THOC6 is critical for mammalian Transcription Export complex (TREX) tetramer formation, which is composed of four six-subunit THO monomers. The TREX tetramer facilitates mammalian RNA processing, in addition to the nuclear mRNA export functions of the TREX dimer conserved through yeast. Human and mouse TIDS model systems revealed novel THOC6-dependent, species-specific TREX tetramer functions. Germline biallelic Thoc6 loss-of-function (LOF) variants result in mouse embryonic lethality. Biallelic THOC6 LOF variants reduce the binding affinity of ALYREF to THOC5 without affecting the protein expression of TREX members, implicating impaired TREX tetramer formation. Defects in RNA nuclear export functions were not detected in biallelic THOC6 LOF human neural cells. Instead, mis-splicing was detected in human and mouse neural tissue, revealing novel THOC6-mediated TREX coordination of mRNA processing. We demonstrate that THOC6 is required for key signaling pathways known to regulate the transition from proliferative to neurogenic divisions during human corticogenesis. Together, these findings implicate altered RNA processing in the developmental biology of TIDS neuropathology.


Subject(s)
Intellectual Disability , RNA , Stilbenes , Sulfonic Acids , Humans , Animals , Mice , RNA/metabolism , Intellectual Disability/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA Processing, Post-Transcriptional , RNA Transport , Mammals/genetics , Nuclear Proteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
6.
Eur J Hum Genet ; 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38351294
7.
Am J Med Genet A ; 194(7): e63566, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38357848

ABSTRACT

PRKACA-related, atrial defects-polydactyly-multiple congenital malformation syndrome is a recently described skeletal ciliopathy, which is caused by disease-causing variants in PRKACA. The primary phenotypic description includes atrial septal defects, and limb anomalies including polydactyly and short limbs. To date, only four molecularly proven patients have been reported in the literature with a recurrent variant, c.409G>A p.Gly137Arg in PRKACA. In this study, we report the fifth affected individual with the same variant and review the clinical features and radiographic findings of this rare syndrome.


Subject(s)
Abnormalities, Multiple , Polydactyly , Humans , Polydactyly/genetics , Polydactyly/pathology , Polydactyly/diagnosis , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Abnormalities, Multiple/diagnosis , Female , Heart Septal Defects, Atrial/genetics , Heart Septal Defects, Atrial/diagnostic imaging , Heart Septal Defects, Atrial/diagnosis , Heart Septal Defects, Atrial/pathology , Male , Phenotype , Mutation/genetics , Heart Defects, Congenital/genetics , Heart Defects, Congenital/pathology , Heart Defects, Congenital/diagnosis , Heart Defects, Congenital/diagnostic imaging , India
8.
Clin Genet ; 105(6): 639-654, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38374498

ABSTRACT

The application of genomic technologies has led to unraveling of the complex genetic landscape of disorders of epilepsy, gaining insights into their underlying disease mechanisms, aiding precision medicine, and providing informed genetic counseling. We herein present the phenotypic and genotypic insights from 142 Indian families with epilepsy with or without comorbidities. Based on the electroclinical findings, epilepsy syndrome diagnosis could be made in 44% (63/142) of the families adopting the latest proposal for the classification by the ILAE task force (2022). Of these, 95% (60/63) of the families exhibited syndromes with developmental epileptic encephalopathy or progressive neurological deterioration. A definitive molecular diagnosis was achieved in 74 of 142 (52%) families. Infantile-onset epilepsy was noted in 81% of these families (61/74). Fifty-five monogenic, four chromosomal, and one imprinting disorder were identified in 74 families. The genetic variants included 65 (96%) single-nucleotide variants/small insertion-deletions, 1 (2%) copy-number variant, and 1 (2%) triplet-repeat expansion in 53 epilepsy-associated genes causing monogenic disorders. Of these, 35 (52%) variants were novel. Therapeutic implications were noted in 51% of families (38/74) with definitive diagnosis. Forty-one out of 66 families with monogenic disorders exhibited autosomal recessive and inherited autosomal dominant disorders with high risk of recurrence.


Subject(s)
Epilepsy , Genetic Counseling , Phenotype , Humans , Epilepsy/genetics , Epilepsy/epidemiology , Epilepsy/diagnosis , India/epidemiology , Male , Female , Child , Child, Preschool , Infant , Genetic Predisposition to Disease , Pedigree , Age of Onset , Genetic Association Studies , Adolescent , Genotype , DNA Copy Number Variations/genetics
9.
Clin Genet ; 106(1): 47-55, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38378010

ABSTRACT

Skeletal dysplasias (SKDs) are a heterogeneous group of more than 750 genetic disorders characterized by abnormal development, growth, and maintenance of bones or cartilage in the human skeleton. SKDs are often caused by variants in early patterning genes and in many cases part of multiple malformation syndromes and occur in combination with non-skeletal phenotypes. The aim of this study was to investigate the underlying genetic cause of congenital SKDs in highly consanguineous Pakistani families, as well as in sporadic and familial SKD cases from India using multigene panel sequencing analysis. Therefore, we performed panel sequencing of 386 bone-related genes in 7 highly consanguineous families from Pakistan and 27 cases from India affected with SKDs. In the highly consanguineous families, we were able to identify the underlying genetic cause in five out of seven families, resulting in a diagnostic yield of 71%. Whereas, in the sporadic and familial SKD cases, we identified 12 causative variants, corresponding to a diagnostic yield of 44%. The genetic heterogeneity in our cohorts was very high and we were able to detect various types of variants, including missense, nonsense, and frameshift variants, across multiple genes known to cause different types of SKDs. In conclusion, panel sequencing proved to be a highly effective way to decipher the genetic basis of SKDs in highly consanguineous families as well as sporadic and or familial cases from South Asia. Furthermore, our findings expand the allelic spectrum of skeletal dysplasias.


Subject(s)
Consanguinity , Pedigree , Humans , Male , Female , Pakistan/epidemiology , India/epidemiology , Osteochondrodysplasias/genetics , Osteochondrodysplasias/diagnosis , Osteochondrodysplasias/pathology , Phenotype , Child , Mutation , Bone Diseases, Developmental/genetics , Genetic Predisposition to Disease , Child, Preschool , High-Throughput Nucleotide Sequencing , Genetic Heterogeneity
11.
Eur J Hum Genet ; 32(2): 243-246, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37985816

ABSTRACT

Synaptic Vesicle Glycoprotein 2 A (SV2A) is a membrane protein of synaptic vesicles and the binding site of antiepileptic drug levetiracetam. Biallelic Arg383Gln is reported in a family with intractable epilepsy earlier. Here, we report on the second family with early onset drug resistant epilepsy. We identified homozygous Arg289Ter variant by exome sequencing that segregated with the phenotype in the family. The affected children in these two families are normal at birth and developed recurrent seizures beginning in the second month of life and developed secondary failure of growth and development. Knock out mice models earlier had replicated the human phenotype observed in these two families. These findings support that biallelic loss of function variants in SV2A result in early onset intractable epilepsy in humans.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Animals , Child , Humans , Mice , Anticonvulsants/metabolism , Anticonvulsants/therapeutic use , Epilepsy/drug therapy , Epilepsy/genetics , Glycoproteins/genetics , Glycoproteins/metabolism , Synaptic Vesicles/genetics , Synaptic Vesicles/metabolism
12.
Am J Med Genet A ; 194(3): e63422, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37876363

ABSTRACT

CHST3-related chondrodysplasia with congenital joint dislocations (CDCJD, #MIM 143095), is a rare genetic skeletal disorder caused by biallelic loss of function variants in CHST3. CHST3 is critical for the sulfation of chondroitin sulfate. This study delineates the clinical presentation of nine individuals featuring the key symptoms of CDCJD; congenital joint (knee and elbow) dislocations, short trunk short stature progressive vertebral anomalies, and metacarpal shortening. Additional manifestations include irregular distal femoral epiphysis, supernumerary carpal ossification centers, bifid humerus, club foot, and cardiac abnormalities. Sanger sequencing was carried out to investigate molecular etiology in eight patients and exome sequencing in one. Genetic testing revealed five homozygous variants in CHST3 (four were novel and one was previously reported). All these variants are located on sulfotransferase domain of CHST3 protein and were classified as pathogenic/ likely pathogenic. We thus report on nine individuals with CHST3-related chondrodysplasia with congenital joint dislocations from India and suggest monitoring the health of cardiac valves in this condition.


Subject(s)
Dwarfism , Joint Dislocations , Musculoskeletal Abnormalities , Osteochondrodysplasias , Humans , Joint Dislocations/diagnosis , Joint Dislocations/genetics , Mutation , Osteochondrodysplasias/diagnosis , Osteochondrodysplasias/genetics , Sulfotransferases/genetics
13.
Clin Dysmorphol ; 33(1): 16-26, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38038141

ABSTRACT

Trisomy 18 is the second most common aneuploidy after trisomy 21. It presents with varying degrees of heterogeneous clinical phenotypes involving multiple organ systems, with a high mortality rate. Clinical assessment of fetal trisomy 18 is always challenging. In this study, we describe the phenotypes of the fetuses with trisomy 18 from a perinatal cohort. We reviewed fetuses with trisomy 18 in referrals for perinatal autopsy over the period of 15 years. A detailed phenotyping of the fetuses with trisomy 18 was executed by perinatal autopsy. Appropriate fetal tissues were obtained to perform genomic testing. We observed trisomy 18 in 16 fetuses (2%) in our cohort of 784 fetal/neonatal losses and a perinatal autopsy was performed on all of them. Abnormal facial profile was the most frequent anomaly (10/16, 62%) followed by anomalies of the extremities (9/16, 56%), and cardiac defects (6/16, 37%). We also observed esophageal atresia, diaphragmatic hernia, and neural tube defect. The study represents one of the largest cohorts of trisomy 18 from a perinatal center from a developing country and highlights the clinical heterogeneity attributed to trisomy 18. We also report a recurrence of trisomy 18 in a family.


Subject(s)
Down Syndrome , Ultrasonography, Prenatal , Pregnancy , Female , Infant, Newborn , Humans , Trisomy 18 Syndrome/diagnosis , Trisomy 18 Syndrome/genetics , Aneuploidy , Fetus/abnormalities , Trisomy/diagnosis , Trisomy/genetics
14.
Eur J Hum Genet ; 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38114583

ABSTRACT

The contribution of de novo variants as a cause of intellectual disability (ID) is well established in several cohorts reported from the developed world. However, the genetic landscape as well as the appropriate testing strategies for identification of de novo variants of these disorders remain largely unknown in low-and middle-income countries like India. In this study, we delineate the clinical and genotypic spectrum of 54 families (55 individuals) with syndromic ID harboring rare de novo variants. We also emphasize on the effectiveness of singleton exome sequencing as a valuable tool for diagnosing these disorders in resource limited settings. Overall, 46 distinct disorders were identified encompassing 46 genes with 51 single-nucleotide variants and/or indels and two copy-number variants. Pathogenic variants were identified in CREBBP, TSC2, KMT2D, MECP2, IDS, NIPBL, NSD1, RIT1, SOX10, BRWD3, FOXG1, BCL11A, KDM6B, KDM5C, SETD5, QRICH1, DCX, SMARCD1, ASXL1, ASXL3, AKT3, FBN2, TCF12, WASF1, BRAF, SMARCA4, SMARCA2, TUBG1, KMT2A, CTNNB1, DLG4, MEIS2, GATAD2B, FBXW7, ANKRD11, ARID1B, DYNC1H1, HIVEP2, NEXMIF, ZBTB18, SETD1B, DYRK1A, SRCAP, CASK, L1CAM, and KRAS. Twenty-four of these monogenic disorders have not been previously reported in the Indian population. Notably, 39 out of 53 (74%) disease-causing variants are novel. These variants were identified in the genes mainly encoding transcriptional and chromatin regulators, serine threonine kinases, lysosomal enzymes, molecular motors, synaptic proteins, neuronal migration machinery, adhesion molecules, structural proteins and signaling molecules.

15.
NPJ Genom Med ; 8(1): 39, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37993442

ABSTRACT

Spondyloepimetaphyseal dysplasia with severe short stature, RPL13-related (SEMD-RPL13), MIM#618728), is a rare autosomal dominant disorder characterized by short stature and skeletal changes such as mild spondylar and epimetaphyseal dysplasia affecting primarily the lower limbs. The genetic cause was first reported in 2019 by Le Caignec et al., and six disease-causing variants in the gene coding for a ribosomal protein, RPL13 (NM_000977.3) have been identified to date. This study presents clinical and radiographic data from 12 affected individuals aged 2-64 years from seven unrelated families, showing highly variable manifestations. The affected individuals showed a range from mild to severe short stature, retaining the same radiographic pattern of spondylar- and epi-metaphyseal dysplasia, but with varying severity of the hip and knee deformities. Two new missense variants, c.548 G>A, p.(Arg183His) and c.569 G>T, p.(Arg190Leu), and a previously known splice variant c.477+1G>A were identified, confirming mutational clustering in a highly specific RNA binding motif. Structural analysis and interpretation of the variants' impact on the protein suggests that disruption of extra-ribosomal functions of the protein through binding of mRNA may play a role in the skeletal phenotype of SEMD-RPL13. In addition, we present gonadal and somatic mosaicism for the condition.

16.
Res Sq ; 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37720017

ABSTRACT

THOC6 is the genetic basis of autosomal recessive THOC6 Intellectual Disability Syndrome (TIDS). THOC6 facilitates the formation of the Transcription Export complex (TREX) tetramer, composed of four THO monomers. The TREX tetramer supports mammalian mRNA processing that is distinct from yeast TREX dimer functions. Human and mouse TIDS model systems allow novel THOC6-dependent TREX tetramer functions to be investigated. Biallelic loss-of-functon(LOF) THOC6 variants do not influence the expression and localization of TREX members in human cells, but our data suggests reduced binding affinity of ALYREF. Impairment of TREX nuclear export functions were not detected in cells with biallelic THOC6 LOF. Instead, mRNA mis-splicing was observed in human and mouse neural tissue, revealing novel insights into THOC6-mediated TREX coordination of mRNA processing. We demonstrate that THOC6 is required for regulation of key signaling pathways in human corticogenesis that dictate the transition from proliferative to neurogenic divisions that may inform TIDS neuropathology.

17.
Am J Med Genet A ; 191(8): 2175-2180, 2023 08.
Article in English | MEDLINE | ID: mdl-37337996

ABSTRACT

Heterozygous disease-causing variants in BCL11B are the basis of a rare neurodevelopmental syndrome with craniofacial and immunological involvement. Isolated craniosynostosis, without systemic or immunological findings, has been reported in one of the 17 individuals reported with this disorder till date. We report three additional individuals harboring de novo heterozygous frameshift variants, all lying in the exon 4 of BCL11B. All three individuals presented with the common findings of this disorder i.e. developmental delay, recurrent infections with immunologic abnormalities and facial dysmorphism. Notably, craniosynostosis of variable degree was seen in all three individuals. We, thus add to the evolving genotypes and phenotypes of BCL11B-related BAFopathy and also review the clinical, genomic spectrum along with the underlying disease mechanisms of this disorder.


Subject(s)
Craniosynostoses , Intellectual Disability , Neurodevelopmental Disorders , Humans , Transcription Factors/genetics , Craniosynostoses/diagnosis , Craniosynostoses/genetics , Frameshift Mutation , Phenotype , Tumor Suppressor Proteins/genetics , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , Repressor Proteins/genetics
18.
Prenat Diagn ; 43(6): 721-723, 2023 06.
Article in English | MEDLINE | ID: mdl-37160697

ABSTRACT

Cardiospondylocarpofacial syndrome (CSCF; MIM#157800) is a rare condition caused by monoallelic variants in the MAP3K7 gene. The characteristic features of CSCF include growth retardation, facial dysmorphism, carpal-tarsal fusion, dorsal spine synostosis, deafness, inner ear malformation, cardiac septal defect and valve dysplasia. We present here a 20-week-old fetus with cardiospondylocarpofacial syndrome arising from a de novo variant c.616T>G p.(Tyr206Asp) in the MAP3K7 (NM_145331.3) gene with early and severe tricuspid valve dysplasia as a prenatal manifestation. Fetal echocardiography revealed tricuspid regurgitation with valve prolapse. Fetus had facial dysmorphism and dilated right atrium and right ventricle with tricuspid valve dysplasia on perinatal evaluation. To the best of our knowledge, this is the first report mentioning the prenatal manifestation of cardiospondylocarpofacial syndrome.


Subject(s)
Heart Defects, Congenital , Mitral Valve Insufficiency , Tricuspid Valve Insufficiency , Pregnancy , Female , Humans , Tricuspid Valve , Heart Defects, Congenital/diagnostic imaging , Heart Defects, Congenital/genetics , Heart Defects, Congenital/complications , Mitral Valve Insufficiency/complications , Mitral Valve Insufficiency/genetics , Fetus , Tricuspid Valve Insufficiency/etiology
19.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166741, 2023 08.
Article in English | MEDLINE | ID: mdl-37146916

ABSTRACT

Genetic mutations are involved in Mendelian disorders. Unbuffered intronic mutations in gene variants can generate aberrant splice sites in mutant transcripts, resulting in mutant isoforms of proteins with modulated expression, stability, and function in diseased cells. Here, we identify a deep intronic variant, c.794_1403A>G, in CRTAP by genome sequencing of a male fetus with osteogenesis imperfecta (OI) type VII. The mutation introduces cryptic splice sites in intron-3 of CRTAP, resulting in two mature mutant transcripts with cryptic exons. While transcript-1 translates to a truncated isoform (277 amino acids) with thirteen C-terminal non-wild-type amino acids, transcript-2 translates to a wild-type protein sequence, except that this isoform contains an in-frame fusion of non-wild-type twenty-five amino acids in a tetratricopeptide repeat sequence. Both mutant isoforms of CRTAP are unstable due to the presence of a unique 'GWxxI' degron, which finally leads to loss of proline hydroxylation and aggregation of type I collagen. Although type I collagen aggregates undergo autophagy, the overall proteotoxicity resulted in death of the proband cells by senescence. In summary, we present a genetic disease pathomechanism by linking a novel deep intronic mutation in CRTAP to unstable mutant isoforms of the protein in lethal OI type VII.


Subject(s)
Collagen Type I , Osteogenesis Imperfecta , Male , Humans , Collagen Type I/genetics , Collagen Type I/metabolism , Osteogenesis Imperfecta/genetics , Osteogenesis Imperfecta/metabolism , Extracellular Matrix Proteins/metabolism , Molecular Chaperones/genetics , Mutation , Protein Isoforms/genetics , Amino Acids
SELECTION OF CITATIONS
SEARCH DETAIL
...