Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Zootaxa ; 5068(1): 60-80, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34810722

ABSTRACT

The California Floristic Province contains numerous ecological regions and a complex geological and geographical history that make it one of the worlds biodiversity hotspots. A number of wide-ranging taxa span across these regions and show complex patterns of dispersal, vicariance and lineage diversification, making localized small ranged species with lower levels of vagility essential to understanding the overall region. Here, we investigate the biogeography and population structure of the California Giant Salamander (Dicamptodon ensatus) (Eschscholtz 1833), an endemic species localized to a narrow coastal region between two areas of biological significance in the California Floristic Province, the North Coast Divide and Monterey Bay. We sequenced one mtDNA fragment (control region) for 133 individuals and a subset of 38 individuals for the anonymous nuclear locus E16C7. We analyzed these sequences with phylogenetic, coalescent, Bayesian clustering, and population genetic approaches in order to infer population structure, phylogenetic structure, and biogeographic history. Additionally, we examined occurrence data with species distribution modeling to generate a habitat suitability map to aid our interpretation of geographic structure. Our analyses recovered 4 major mtDNA lineages, two of which are combined into 3 major lineages when nuDNA is examined. These 3 major lineages are bounded by 4 major current or past geological features; the North Coast Divide, the former Wilson Grove Embayment/current Petaluma Gap, San Francisco Bay, and Monterey Bay. Other low-vagility species linked to moist microclimates and forest habitat do share similarities with the genetic patterns of D. ensatus hinting at a larger role for the past Wilson Grove embayment and modern Petaluma Gap in California biogeography.


Subject(s)
DNA, Mitochondrial , Urodela , Animals , Bayes Theorem , California , DNA, Mitochondrial/genetics , Genetic Structures , Genetic Variation , Phylogeny , Phylogeography , Urodela/genetics
2.
Mol Phylogenet Evol ; 133: 128-140, 2019 04.
Article in English | MEDLINE | ID: mdl-30584918

ABSTRACT

The Glass Lizards are a subfamily (Anguinae) of Anguid Lizards with an elongated limbless body plan that occur throughout the Northern Hemisphere primarily in North America, Europe, and Asia, but also have a presence in North Africa and Indonesia. We used twenty-five nuclear loci (15,191 bp) and 2090 bp of the mtDNA genome to generate a phylogeny containing all known species groups to explore species relationships within the group as well as divergence dating. We also examined the group in the context of a coalescent species tree analysis and species delimitation. All major lineages were found to be monophyletic with potential cryptic diversity in some. The Anguinae first appeared in the Eocene and most lineages were present by the beginning of the Miocene. The Anguinae originated in Europe from an Anguidae ancestor that crossed the Thulean land bridge, spreading to Asia after the drying of the Turgai Sea, then across Beringia as the climate permitted. A species tree analyses found support for the major Anguinae lineages and species delimitation supported accepted species.


Subject(s)
Lizards/classification , Phylogeny , Animals , Bayes Theorem , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Geography , Lizards/genetics , Mitochondria/genetics , Probability , Sequence Analysis, DNA , Species Specificity , Time Factors
3.
PLoS One ; 11(1): e0146170, 2016.
Article in English | MEDLINE | ID: mdl-26800442

ABSTRACT

The bulk of models used to understand the species diversification on Madagascar have been constructed using vertebrate taxa. It is not clear how these models affect less vagile species that may interact at a variety of spatial scales. Several studies on vertebrates have divided Madagascar into east-west bioclimatic regions, suggesting there is a fundamental division between eastern wet-adapted and western dry-adapted taxa. An alternative model of ecogeographic constraints shows a north-south division. We test whether the diversification in a small arthropod with variable degrees of dispersal conform to either model of ecogeographic constraints proposed for vertebrate taxa. We employ a molecular taxonomic dataset using ~2 kilobases nuDNA (Wg, LW Rh, Abd-A, 28s) and 790 basepairs mtDNA (CO1), along with geographic and habitat data, to examine the diversification patterns of the ant genus Mystrium Roger, 1862, (Subfamily Amblyoponinae) from Madagascar. The nuclear and mitochondrial phylogenies were both congruent with morphospecies as indicated in a recent revision of the genus. Species of Mystrium practice different colony reproductive strategies (winged queens vs non-winged queens). Alternate reproductive strategies led to inequalities in female dispersal ability among species, providing an additional layer for examination of the impacts of vagility on divergence, especially when measured using a maternally inherited locus. Mystrium species distribution patterns support these models of ecogeographic constraints. Reproductive strategy effected how Mystrium mtDNA lineages were associated with large-scale habitat distinctions and various topographical features. Furthermore, in some cases we find microgeographic population structure which appears to have been impacted by localized habitat differences (tsingy limestone formations, littoral forest) on a scale much smaller than that found in vertebrates. The current system offers a finer scale look at species diversification on the island, and helps achieve a more universal understanding of the generation of biodiversity on Madagascar.


Subject(s)
Ants/classification , Ants/genetics , DNA, Mitochondrial/genetics , Mitochondria/genetics , Social Isolation , Animals , Base Sequence , Biological Evolution , Ecosystem , Genetic Variation/genetics , Geography , Madagascar , Phylogeography , Reproduction , Sequence Analysis, DNA
4.
Mol Phylogenet Evol ; 40(2): 359-69, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16630727

ABSTRACT

For many years, the ant subfamily Ponerinae was hypothesized to contain the basal (early branching) lineages of ants. Recently the Ponerinae were reclassified into six poneromorph subfamilies based on morphological analysis. We evaluate this new poneromorph classification using 1240 base pairs of DNA sequence data obtained from 28S rRNA gene sequences of 68 terminal taxa. The molecular tree supported the monophyly of the ant family Formicidae, with 100% parsimony bootstrap (PB) support and posterior probabilities (PP) of 1.00, with the ant subfamily Leptanillinae as a sister group to all other ants (PB=62, PP=93). However, our analyses strongly support the polyphyly of the Poneromorph subfamilies (sensu Bolton). The Ectatomminae and Heteroponerinae are more closely related to the Formicoid subfamilies than to the rest of the poneromophs (PB=96, PP=100). The Amblyoponinae (PB=52, PP=96), Paraponerinae (PB=100, PP=100), Ponerinae (PB<50, PP=71), and Proceratiinae (PB=98, PP=100) appear as distinct lineages at the base of the tree and are identified as a poneroid grade. Monophyletic origins for the poneroid subfamilies Amblyoponinae, Paraponerinae, Ponerinae and Proceratiinae are supported in our analysis. However, the genus Platythyrea forms a distinct sister group to the Ponerini within the Ponerinae. The Heteroponerinae, based on our sample of Heteroponera, are associated with the subfamily Ectatomminae (PB=98, PP=100). Furthermore, our data indicate the genus Probolomyrmex belongs to the Proceratiinae as suggested by recent morphological analysis (PB=98, PP=100).


Subject(s)
Hymenoptera/classification , Hymenoptera/genetics , RNA, Ribosomal, 28S/genetics , Animals , Phylogeny
5.
Mol Ecol ; 14(1): 159-70, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15643959

ABSTRACT

DNA sequences of the mitochondrial control region were analysed from 298 individual sharp-shinned hawks (Accipiter striatus velox) sampled at 12 different migration study sites across North America. The control region proved to be an appropriate genetic marker for identification of continental-scale population genetic structure and for determining the historical demography of population units. These data suggest that sharp-shinned hawks sampled at migration sites in North America are divided into distinct eastern and western groups. The eastern group appears to have recently expanded in response to the retreat of glacial ice at the end of the last glacial maximum. The western group appears to have been strongly effected by the Holocene Hypsithermal dry period, with molecular evidence indicating the most recent expansion following this mid-Holocene climatic event 7000-5000 years before present.


Subject(s)
Hawks/physiology , Animals , Climate , DNA, Mitochondrial/genetics , Demography , Genetics, Population , Hawks/classification , Hawks/genetics , North America , Phylogeny
6.
Evolution ; 45(8): 1849-1868, 1991 Dec.
Article in English | MEDLINE | ID: mdl-28563958

ABSTRACT

The Island Fox, Urocyon littoralis, is a dwarf form found on six of the Channel Islands located 30-98 km off the coast of southern California. The island populations differ in two variables that affect genetic variation: effective population size and duration of isolation. We estimate that the effective population size of foxes on the islands varies from approximately 150 to 1,000 individuals. Archeological and geological evidence suggests that foxes likely arrived on the three northern islands minimally 10,400-16,000 years ago and dispersed to the three southern islands 2,200-4,300 years ago. We use morphometrics, allozyme electrophoresis, mitochondrial DNA (mtDNA) restriction-site analysis, and analysis of hypervariable minisatellite DNA to measure variability within and distances among island fox populations. The amount of within-population variation is lowest for the smallest island populations and highest for the mainland population. However, the larger populations are sometimes less variable, with respect to some genetic measures, than expected. No distinct trends of variability with founding time are observed. Genetic distances among the island populations, as estimated by the four techniques, are not well correlated. The apparent lack of correspondence among techniques may reflect the effects of mutation rate and colonization history on the values of each genetic measure.

SELECTION OF CITATIONS
SEARCH DETAIL
...