Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Stud Conserv ; 69(1): 1-16, 2024.
Article in English | MEDLINE | ID: mdl-38384673

ABSTRACT

This contribution presents the results of a technical investigation on the pigments of William Burges' Great Bookcase (1859-62), preserved at the Ashmolean Museum. It is the first thorough material investigation of a remarkable piece of Gothic Revival painted furniture, notably an artwork by Burges, whose work has so far received little attention from a technical point of view. This study was developed during the Covid-19 pandemic, which significantly affected the planned research activities since the investigation relied extensively on collaborations with institutions within and beyond the University of Oxford. The disruption caused by the lockdown and other restrictions went far beyond any prediction and led us to redefine the project's outcome and methodology 'on the fly' while maintaining its overall vision. However, thanks to the timeliness of a substantial research grant received from the Capability for Collection Fund (CapCo, Art and Humanities Research Council), we could ultimately turn this research into a unique opportunity to test the potential of recently acquired instruments, namely the Opus Apollo infrared camera and the Bruker CRONO XRF mapping spectrometer. Therefore, besides reporting on the findings, this contribution outlines the strategy adopted and assesses the new equipment's capability for the non-invasive analysis of complex polychromies.

2.
Materials (Basel) ; 15(16)2022 Aug 20.
Article in English | MEDLINE | ID: mdl-36013883

ABSTRACT

The combined use of non-invasive on-site portable techniques, Raman microscopy, and X-ray fluorescence spectroscopy on seven imperial bowls and two decorated dishes, attributed to the reigns of the Kangxi, Yongzheng, Qianlong, and Daoguang emperors (Qing Dynasty), allows the identification of the coloring agents/opacifiers and composition types of the glazes and painted enamels. Particular attention is paid to the analysis of the elements used in the (blue) marks and those found in the blue, yellow, red, and honey/gilded backgrounds on which, or in reserve, a floral motif is principally drawn. The honey-colored background is made with gold nanoparticles associated with a lead- and arsenic-based flux. One of the red backgrounds is also based on gold nanoparticles, the second containing copper nanoparticles, both in lead-based silicate enamels like the blue and yellow backgrounds. Tin and arsenic are observed, but cassiterite (SnO2) is clearly observed in one of the painted decors (dish) and in A676 yellow, whereas lead (calcium/potassium) arsenate is identified in most of the enamels. Yellow color is achieved with Pb-Sn-Sb pyrochlore (Naples yellow) with various Sb contents, although green color is mainly based on lead-tin oxide mixed with blue enamel. The technical solutions appear very different from one object to another, which leads one to think that each bowl is really a unique object and not an item produced in small series. The visual examination of some marks shows that they were made in overglaze (A608, A616, A630, A672). It is obvious that different types of cobalt sources were used for the imprinting of the marks: cobalt rich in manganese for bowl A615 (Yongzheng reign), cobalt rich in arsenic for bowl A613 (but not the blue mark), cobalt with copper (A616), and cobalt rich in arsenic and copper (A672). Thus, we have a variety of cobalt sources/mixtures. The high purity of cobalt used for A677 bowl indicates a production after ~1830-1850.

3.
Materials (Basel) ; 14(23)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34885588

ABSTRACT

Two masterpieces of the Qing Dynasty (1644-1912 CE), one in gilded brass (incense burner) decorated with cloisonné enamels stylistically attributed to the end of the Kangxi Emperor's reign, the other in gold (ewer offered by Napoleon III to the Empress as a birthday present), decorated with both cloisonné and painted enamels bearing the mark of the Qianlong Emperor, were non-invasively studied by optical microscopy, Raman microspectroscopy and X-ray microfluorescence spectroscopy (point measurements and mapping) implemented on-site with mobile instruments. The elemental compositions of the metal substrates and enamels are compared. XRF point measurements and mappings support the identification of the coloring phases and elements obtained by Raman microspectroscopy. Attention was paid to the white (opacifier), blue, yellow, green, and red areas. The demonstration of arsenic-based phases (e.g., lead arsenate apatite) in the blue areas of the ewer, free of manganese, proves the use of cobalt imported from Europe. The high level of potassium confirms the use of smalt as the cobalt source. On the other hand, the significant manganese level indicates the use of Asian cobalt ores for the enamels of the incense burner. The very limited use of the lead pyrochlore pigment (European Naples yellow recipes) in the yellow and soft green cloisonné enamels of the Kangxi incense burner, as well as the use of traditional Chinese recipes for other colors (white, turquoise, dark green, red), reinforces the pioneering character of this object in technical terms at the 17th-18th century turn. The low level of lead in the cloisonné enamels of the incense burner may also be related to the use of European recipes. On the contrary, the Qianlong ewer displays all the enameling techniques imported from Europe to obtain a painted decoration of exceptional quality with the use of complex lead pyrochlore pigments, with or without addition of zinc, as well as cassiterite opacifier.

SELECTION OF CITATIONS
SEARCH DETAIL
...