Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Dev Biol ; 8: 541, 2020.
Article in English | MEDLINE | ID: mdl-32719795

ABSTRACT

Early diagnosis of Alzheimer's disease (AD) supposedly increases the effectiveness of therapeutic interventions. However, presently available diagnostic procedures are either invasive or require complex and expensive technologies, which cannot be applied at a larger scale to screen populations at risk of AD. We were looking for a biomarker allowing to unveil a dysfunction of molecular mechanisms, which underly synaptic plasticity and memory, before the AD phenotype is manifested and investigated the effects of transcranial direct current stimulation (tDCS) in 3×Tg-AD mice, an experimental model of AD which does not exhibit any long-term potentiation (LTP) and memory deficits at the age of 3 months (3×Tg-AD-3M). Our results demonstrated that tDCS differentially affected 3×Tg-AD-3M and age-matched wild-type (WT) mice. While tDCS increased LTP at CA3-CA1 synapses and memory in WT mice, it failed to elicit these effects in 3×Tg-AD-3M mice. Remarkably, 3×Tg-AD-3M mice did not show the tDCS-dependent increases in pCREB Ser133 and pCaMKII Thr286 , which were found in WT mice. Of relevance, tDCS induced a significant increase of plasma BDNF levels in WT mice, which was not found in 3×Tg-AD-3M mice. Collectively, our results showed that plasticity mechanisms are resistant to tDCS effects in the pre-AD stage. In particular, the lack of BDNF responsiveness to tDCS in 3×Tg-AD-3M mice suggests that combining tDCS with dosages of plasma BDNF levels may provide an easy-to-detect and low-cost biomarker of covert impairment of synaptic plasticity mechanisms underlying memory, which could be clinically applicable. Testing proposed here might be useful to identify AD in its preclinical stage, allowing timely and, hopefully, more effective disease-modifying interventions.

2.
Cereb Cortex ; 30(5): 2972-2985, 2020 05 14.
Article in English | MEDLINE | ID: mdl-31821409

ABSTRACT

Consistent body of evidence shows that transcranial direct-current stimulation (tDCS) over the primary motor cortex (M1) facilitates motor learning and promotes recovery after stroke. However, the knowledge of molecular mechanisms behind tDCS effects needs to be deepened for a more rational use of this technique in clinical settings. Here we characterized the effects of anodal tDCS of M1, focusing on its impact on glutamatergic synaptic transmission and plasticity. Mice subjected to tDCS displayed increased long-term potentiation (LTP) and enhanced basal synaptic transmission at layer II/III horizontal connections. They performed better than sham-stimulated mice in the single-pellet reaching task and exhibited increased forelimb strength. Dendritic spine density of layer II/III pyramidal neurons was also increased by tDCS. At molecular level, tDCS enhanced: 1) BDNF expression, 2) phosphorylation of CREB, CaMKII, and GluA1, and 3) S-nitrosylation of GluA1 and HDAC2. Blockade of nitric oxide synthesis by L-NAME prevented the tDCS-induced enhancement of GluA1 phosphorylation at Ser831 and BDNF levels, as well as of miniature excitatory postsynaptic current (mEPSC) frequency, LTP and reaching performance. Collectively, these findings demonstrate that anodal tDCS engages plasticity mechanisms in the M1 and highlight a role for nitric oxide (NO) as a novel mediator of tDCS effects.


Subject(s)
Motor Cortex/physiology , Neuronal Plasticity/physiology , Nitric Oxide/physiology , Signal Transduction/physiology , Transcranial Direct Current Stimulation/methods , Animals , Electrodes , Male , Mice , Mice, Inbred C57BL , Motor Cortex/drug effects , NG-Nitroarginine Methyl Ester/pharmacology , Neuronal Plasticity/drug effects , Nitric Oxide/antagonists & inhibitors , Organ Culture Techniques , Signal Transduction/drug effects
3.
Stem Cells ; 37(11): 1467-1480, 2019 11.
Article in English | MEDLINE | ID: mdl-31381841

ABSTRACT

We previously reported that Herpes simplex virus type-1 (HSV-1) infection of cultured neurons triggered intracellular accumulation of amyloid-ß protein (Aß) markedly impinging on neuronal functions. Here, we demonstrated that HSV-1 affects in vitro and in vivo adult hippocampal neurogenesis by reducing neural stem/progenitor cell (NSC) proliferation and their neuronal differentiation via intracellular Aß accumulation. Specifically, cultured NSCs were more permissive for HSV-1 replication than mature neurons and, once infected, they exhibited reduced proliferation (assessed by 5'-bromo-deoxyuridine incorporation, Ki67 immunoreactivity, and Sox2 mRNA expression) and impaired neuronal differentiation in favor of glial phenotype (evaluated by immunoreactivity for the neuronal marker MAP2, the glial marker glial fibrillary astrocyte protein, and the expression of the proneuronal genes Mash1 and NeuroD1). Similarly, impaired adult neurogenesis was observed in the subgranular zone of hippocampal dentate gyrus of an in vivo model of recurrent HSV-1 infections, that we recently set up and characterized, with respect to mock-infected mice. The effects of HSV-1 on neurogenesis did not depend on cell death and were due to Aß accumulation in infected NSCs. Indeed, they were: (a) reverted, in vitro, by the presence of either ß/γ-secretase inhibitors preventing Aß production or the specific 4G8 antibody counteracting the action of intracellular Aß; (b) not detectable, in vivo, in HSV-1-infected amyloid precursor protein knockout mice, unable to produce and accumulate Aß. Given the critical role played by adult neurogenesis in hippocampal-dependent memory and learning, our results suggest that multiple virus reactivations in the brain may contribute to Alzheimer's disease phenotype by also targeting NSCs. Stem Cells 2019;37:1467-1480.


Subject(s)
Amyloid beta-Peptides/metabolism , Herpesvirus 1, Human/pathogenicity , Hippocampus/metabolism , Hippocampus/virology , Amyloid beta-Peptides/genetics , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Blotting, Western , Cells, Cultured , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neurogenesis/genetics , Neurogenesis/physiology , Reverse Transcriptase Polymerase Chain Reaction
5.
Mol Neurobiol ; 56(8): 5934-5949, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30689197

ABSTRACT

Impairment of adult hippocampal neurogenesis is an early event in Alzheimer's disease (AD), playing a crucial role in cognitive dysfunction associated with this pathology. However, the mechanisms underlying defective neurogenesis in AD are still unclear. Recently, the nucleoporin Nup153 has been described as a new epigenetic determinant of adult neural stem cell (NSC) maintenance and fate. Here we investigated whether Nup153 dysfunction could affect the plasticity of NSCs in AD. Nup153 expression was strongly reduced in AD-NSCs, as well as its interaction with the transcription factor Sox2, a master regulator of NSC stemness and their neuronal differentiation. Similar Nup153 reduction was also observed in WT-NSCs treated with amyloid-ß (Aß) or stimulated with a nitric oxide donor. Accordingly, AD-NSCs treated with either a γ-secretase inhibitor or antioxidant compounds showed higher Nup153 levels suggesting that both nitrosative stress and Aß accumulation affect Nup153 expression. Of note, restoration of Nup153 levels in AD-NSCs promoted their proliferation, as assessed by BrdU incorporation, neurosphere assay, and stemness gene expression analysis. Nup153 overexpression also recovered AD-NSC response to differentiation, increasing the expression of pro-neuronal genes, the percentage of cells positive for neuronal markers, and the acquisition of a more mature neuronal phenotype. Electrophysiological recordings revealed that neurons differentiated from Nup153-transfected AD-NSCs displayed higher Na+ current density, comparable to those deriving from WT-NSCs. Our data uncover a novel role for Nup153 in NSCs from animal model of AD and point to Nup153 as potential target to restore physiological NSC behavior and fate in neurodegenerative diseases.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Cell Separation , Neural Stem Cells/metabolism , Nuclear Pore Complex Proteins/metabolism , Amyloid beta-Peptides/metabolism , Animals , Cell Differentiation , Cell Movement , Cell Proliferation , Cells, Cultured , Disease Models, Animal , Mice, Transgenic , Nitric Oxide/metabolism , Nitrosation , SOXB1 Transcription Factors/metabolism , Signal Transduction
6.
Cereb Cortex ; 29(5): 1851-1865, 2019 05 01.
Article in English | MEDLINE | ID: mdl-29790931

ABSTRACT

Spike timing-dependent plasticity (STDP) is a form of activity-dependent remodeling of synaptic strength that underlies memory formation. Despite its key role in dictating learning rules in the brain circuits, the molecular mechanisms mediating STDP are still poorly understood. Here, we show that spike timing-dependent long-term depression (tLTD) and A-type K+ currents are modulated by pharmacological agents affecting the levels of active glycogen-synthase kinase 3 (GSK3) and by GSK3ß knockdown in layer 2/3 of the mouse somatosensory cortex. Moreover, the blockade of A-type K+ currents mimics the effects of GSK3 up-regulation on tLTD and occludes further changes in synaptic strength. Pharmacological, immunohistochemical and biochemical experiments revealed that GSK3ß influence over tLTD induction is mediated by direct phosphorylation at Ser-616 of the Kv4.2 subunit, a molecular determinant of A-type K+ currents. Collectively, these results identify the functional interaction between GSK3ß and Kv4.2 channel as a novel mechanism for tLTD modulation providing exciting insight into the understanding of GSK3ß role in synaptic plasticity.


Subject(s)
Glycogen Synthase Kinase 3 beta/metabolism , Long-Term Synaptic Depression/physiology , Neurons/physiology , Shal Potassium Channels/metabolism , Somatosensory Cortex/physiology , Animals , Excitatory Postsynaptic Potentials , Mice, Inbred C57BL , Neurons/metabolism , Phosphorylation , Somatosensory Cortex/metabolism
7.
Sci Rep ; 8(1): 262, 2018 01 10.
Article in English | MEDLINE | ID: mdl-29321633

ABSTRACT

Exposure to extremely low-frequency electromagnetic fields (ELFEF) influences the expression of key target genes controlling adult neurogenesis and modulates hippocampus-dependent memory. Here, we assayed whether ELFEF stimulation affects olfactory memory by modulating neurogenesis in the subventricular zone (SVZ) of the lateral ventricle, and investigated the underlying molecular mechanisms. We found that 30 days after the completion of an ELFEF stimulation protocol (1 mT; 50 Hz; 3.5 h/day for 12 days), mice showed enhanced olfactory memory and increased SVZ neurogenesis. These effects were associated with upregulated expression of mRNAs encoding for key regulators of adult neurogenesis and were mainly dependent on the activation of the Wnt pathway. Indeed, ELFEF stimulation increased Wnt3 mRNA expression and nuclear localization of its downstream target ß-catenin. Conversely, inhibition of Wnt3 by Dkk-1 prevented ELFEF-induced upregulation of neurogenic genes and abolished ELFEF's effects on olfactory memory. Collectively, our findings suggest that ELFEF stimulation increases olfactory memory via enhanced Wnt/ß-catenin signaling in the SVZ and point to ELFEF as a promising tool for enhancing SVZ neurogenesis and olfactory function.


Subject(s)
Electromagnetic Fields , Lateral Ventricles/physiology , Memory , Neurogenesis , Olfactory Cortex/physiology , Olfactory Cortex/radiation effects , Wnt Signaling Pathway , Animals , Discrimination, Psychological , Female , Male , Mice , Odorants , Olfactory Perception , Wnt Proteins/metabolism , beta Catenin/metabolism
8.
Mol Neurobiol ; 53(5): 3227-3234, 2016 07.
Article in English | MEDLINE | ID: mdl-26048669

ABSTRACT

Amyloid precursor protein (APP) is overexpressed in familiar and sporadic Alzheimer Disease (AD) patients suggesting that, in addition to abnormalities in APP cleavage, enhanced levels of APP full length might contribute to the pathology. Based on data showing that the two RNA binding proteins (RBPs), Fragile-X Mental Retardation Protein (FMRP) and heteronuclear Ribonucleoprotein C (hnRNP C), exert an opposite control on APP translation, we have analyzed whether expression and translation of these two RBPs vary in relation to changes in APP protein and mRNA levels in the AD brain at 1, 3, and 6 months of age. Here, we show that, as expected, human APP is overexpressed in hippocampal total extract from Tg2576 mice at all age points. APP overexpression, however, is not stable over time but reaches its maximal level in 1-month-old mutants in association with the stronger (i) reduction of FMRP and (ii) augmentation of hnRNP C. APP levels then decrease progressively as a function of age in close relationship with the gradual normalization of FMRP and hnRNP C levels. Consistent with the mouse data, expression of FMRP and hnRNP C are, respectively, decreased and increased in hippocampal synaptosomes from sporadic AD patients. Our findings identify two RBP targets that might be manipulated for reducing abnormally elevated levels of APP in the AD brain, with the hypothesis that acting upstream of amyloidogenic processing might contribute to attenuate the amyloid burden.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/metabolism , Fragile X Mental Retardation Protein/metabolism , Heterogeneous-Nuclear Ribonucleoprotein Group C/metabolism , Protein Biosynthesis , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/genetics , Animals , Female , Hippocampus/metabolism , Humans , Male , Mice, Inbred C57BL , Mice, Transgenic , Mutant Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Synapses/metabolism , Tissue Extracts , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...