Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
2.
Theor Appl Genet ; 133(1): 365, 2020 01.
Article in English | MEDLINE | ID: mdl-31637458

ABSTRACT

The above-mentioned article was published in 2015 with an error in the reverse primer sequence for the PPOA2d1074 marker, which made amplification difficult. The reverse primer was missing a thymine nucleotide at the thirteenth position (GCGGTGCTTCACTTGGT).

3.
Plant Genome ; 10(2)2017 07.
Article in English | MEDLINE | ID: mdl-28724083

ABSTRACT

The wheat stem sawfly (WSS) is an economically important pest of wheat in the Northern Great Plains. The primary means of WSS control is resistance associated with the single quantitative trait locus (QTL) , which controls most stem solidness variation. The goal of this study was to identify stem solidness candidate genes via RNA-seq. This study made use of 28 single nucleotide polymorphism (SNP) makers derived from expressed sequence tags (ESTs) linked to contained within a 5.13 cM region. Allele specific expression of EST markers was examined in stem tissue for solid and hollow-stemmed pairs of two spring wheat near isogenic lines (NILs) differing for the QTL. Of the 28 ESTs, 13 were located within annotated genes and 10 had detectable stem expression. Annotated genes corresponding to four of the ESTs were differentially expressed between solid and hollow-stemmed NILs and represent possible stem solidness gene candidates. Further examination of the 5.13 cM region containing the 28 EST markers identified 260 annotated genes. Twenty of the 260 linked genes were up-regulated in hollow NIL stems, while only seven genes were up-regulated in solid NIL stems. An -methyltransferase within the region of interest was identified as a candidate based on differential expression between solid and hollow-stemmed NILs and putative function. Further study of these candidate genes may lead to the identification of the gene(s) controlling stem solidness and an increased ability to select for wheat stem solidness and manage WSS.


Subject(s)
Gene Expression Profiling , Genes, Plant , Plant Stems/genetics , Triticum/genetics , Alleles , Expressed Sequence Tags , Polymorphism, Single Nucleotide
4.
Theor Appl Genet ; 128(8): 1605-15, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25982131

ABSTRACT

KEY MESSAGE: Characterized novel mutations present at Ppo loci account for the substantial reduction of the total kernel PPO activity present in a putative null Ppo - A1 genetic background. Wheat (Triticum aestivum) polyphenol oxidase (PPO) contributes to the time-dependent discoloration of Asian noodles. Wheat contains multiple paralogous and orthologous Ppo genes, Ppo-A1, Ppo-D1, Ppo-A2, Ppo-D2, and Ppo-B2, expressed in wheat kernels. To date, wheat noodle color improvement efforts have focused on breeding cultivars containing Ppo-D1 and Ppo-A1 alleles conferring reduced PPO activity. A major impediment to wheat quality improvement is a lack of additional Ppo alleles conferring reduced kernel PPO. In this study, a previously reported very low PPO line, 07OR1074, was found to contain a novel allele at Ppo-A2 and null alleles at the Ppo-A1 and Ppo-D1 loci. To examine the impact of each mutation upon kernel PPO, populations were generated from crosses between 07OR1074 and the hard white spring wheat cultivars Choteau and Vida. Expression analysis using RNA-seq demonstrated no detectable Ppo-A1 transcripts in 07OR1074 while Ppo-D1 transcripts were present at less than 10% of that seen in Choteau and Vida. Novel markers specific for the Ppo-D1 and Ppo-A2 mutations discovered in 07OR1074, along with the Ppo-A1 STS marker, were used to screen segregating populations. Evaluation of lines indicated a substantial genotypic effect on PPO with Ppo-A1 and Ppo-D1 alleles contributing significantly to total PPO in both populations. These results show that the novel mutations in Ppo-A1 and Ppo-D1 present in 07OR1074 are both important to lowering overall wheat seed PPO activity and may be useful to produce more desirable and marketable wheat-based products.


Subject(s)
Catechol Oxidase/genetics , Mutation , Seeds/enzymology , Triticum/genetics , Alleles , Breeding , Catechol Oxidase/metabolism , Crosses, Genetic , DNA, Plant/genetics , Genetic Markers , Triticum/enzymology
5.
Genetics ; 183(3): 853-60, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19752217

ABSTRACT

In planta analysis of protein function in a crop plant could lead to improvements in understanding protein structure/function relationships as well as selective agronomic or end product quality improvements. The requirements for successful in planta analysis are a high mutation rate, an efficient screening method, and a trait with high heritability. Two ideal targets for functional analysis are the Puroindoline a and Puroindoline b (Pina and Pinb, respectively) genes, which together compose the wheat (Triticum aestivum L.) Ha locus that controls grain texture and many wheat end-use properties. Puroindolines (PINs) together impart soft texture, and mutations in either PIN result in hard seed texture. Studies of the PINs' mode of action are limited by low allelic variation. To create new Pin alleles and identify critical function-determining regions, Pin point mutations were created in planta via EMS treatment of a soft wheat. Grain hardness of 46 unique PIN missense alleles was then measured using segregating F(2):F(3) populations. The impact of individual missense alleles upon PIN function, as measured by grain hardness, ranged from neutral (74%) to intermediate to function abolishing. The percentage of function-abolishing mutations among mutations occurring in both PINA and PINB was higher for PINB, indicating that PINB is more critical to overall Ha function. This is contrary to expectations in that PINB is not as well conserved as PINA. All function-abolishing mutations resulted from structure-disrupting mutations or from missense mutations occurring near the Tryptophan-rich region. This study demonstrates the feasibility of in planta functional analysis of wheat proteins and that the Tryptophan-rich region is the most important region of both PINA and PINB.


Subject(s)
Mutation, Missense , Plant Proteins/genetics , Seeds/genetics , Triticum/genetics , Amino Acid Sequence , Conserved Sequence/genetics , Edible Grain/genetics , Edible Grain/standards , Ethyl Methanesulfonate/toxicity , Evolution, Molecular , Genotype , Molecular Sequence Data , Mutagenesis/drug effects , Phenotype , Sequence Homology, Amino Acid , Tryptophan/genetics
6.
Theor Appl Genet ; 118(2): 247-57, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18846362

ABSTRACT

The Hardness (Ha) locus controls grain texture and affects many end-use properties of wheat (Triticum aestivum L.). The Ha locus is functionally comprised of the Puroindoline a and b genes, Pina and Pinb, respectively. The lack of Pin allelic diversity is a major factor limiting Ha functional analyses and wheat quality improvement. In order to create new Ha alleles, a 630 member M(2) population was produced in the soft white spring cultivar Alpowa using ethylmethane sulfonate mutagenesis. The M(2) population was screened to identify new alleles of Pina and Pinb. Eighteen new Pin alleles, including eight missense alleles, were identified. F(2) populations for four of the new Pin alleles were developed after crossing each back to non-mutant Alpowa. Grain hardness was then measured on F(2:3) seeds and the impact of each allele on grain hardness was quantified. The tested mutations were responsible for between 28 and 94% of the grain hardness variation and seed weight and vigor of all mutation lines was restored among the F(2) populations. Selection of new Pin alleles following direct phenotyping or direct sequencing is a successful approach to identify new Ha alleles useful in improving wheat product quality and understanding Ha locus function.


Subject(s)
Alleles , Plant Proteins/genetics , Triticum/genetics , Ethyl Methanesulfonate , Genotype , Mutagenesis , Mutation , Phenotype , Plant Proteins/chemistry , Plant Proteins/physiology
7.
Theor Appl Genet ; 113(8): 1563-70, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16988815

ABSTRACT

The tightly linked puroindoline genes, Pina and Pinb, control grain texture in wheat, with wild type forms of both giving soft, and a sequence alteration affecting protein expression or function in either giving rise to hard wheat. Previous experiments have shown that addition of wild type Pina in the presence of mutated Pinb gave intermediate grain texture but addition of wild type Pinb gave soft grain. This raises questions as to whether Pina may be less functional than Pinb. Our goal here was to develop and characterize wheat lines expressing the wild type Pina-D1a sequence in hard wheat with the null mutation (Pina-D1b) for Pina. Three transgenic lines plus Bobwhite were evaluated in two environments. Grain texture, grain protein, and kernel weight were determined for the transgenic lines and Bobwhite. The three transgenic lines had soft phenotype, and none of the transgenic lines differed from Bobwhite for grain protein or kernel weight. The soft phenotype was accompanied by increases in Pina transcript accumulation. Total Triton X-114 extractable PINA and PINB increased from 2.5 to 5.5 times those from a soft wheat reference sample, and friabilin, PINA and PINB bound to starch, increased from 3.8 to 7.8 times those of the soft wheat reference. Bobwhite showed no starch bound PINA, but transgenic lines had levels from 5.3 to 13.7 times those of the soft wheat reference sample. Starch bound PINB in transgenic lines also increased from 0.9 to 2.5 times that for the soft wheat reference sample. The transgenic expression of wild type Pina sequence in the Pina null genotype gave soft grain with the characteristics of soft wheat including increased starch bound friabilin. The results support the hypothesis that both wild type Pin genes need to be present for friabilin formation and soft grain.


Subject(s)
Genes, Plant/physiology , Plant Proteins/physiology , Plants, Genetically Modified/anatomy & histology , Triticum/anatomy & histology , Triticum/genetics , Alleles , Genetic Complementation Test , Octoxynol , Phenotype , Plant Proteins/analysis , Plant Proteins/genetics , Plants, Genetically Modified/chemistry , Plants, Genetically Modified/genetics , Polyethylene Glycols/chemistry , Transcription, Genetic , Transformation, Genetic , Triticum/chemistry
8.
J Anim Sci ; 84(3): 641-50, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16478956

ABSTRACT

Starch is the primary nutrient in ruminant diets used to promote high levels of performance. The site of starch digestion alters the nature of digestive end products (VFA in the rumen vs. glucose in the small intestine) and the efficiency of use. Cereal grain endosperm texture plays a major role in the rate and extent of starch degradation in ruminants. Wheat grain texture is regulated by the starch surface protein complex friabilin that consists primarily of puroindoline (PIN) A and B. Soft kernel texture in wheat is a result of both PIN genes being in the wild type active form and bound to starch. The objective of this study was to investigate the effect of varying PIN content in wheat on the rate of starch digestion in the rumen of beef cattle. In Exp. 1, 6 transgenic soft pin a/b isolines created in a hard wheat background, and 2 hard wheat controls were milled to yield a wide range of mean particle sizes across all lines. Milled samples were incubated in situ for 3 h. Increased expression of both PINA and PINB decreased DM digestibility (DMD) by 29.2% (P < 0.05) and decreased starch digestibility by 30.8% (P < 0.05). Experiment 2 separated the effects of particle size and total PIN content on digestion by milling the hardest and softest lines such that the mean particle size was nearly identical. Increased PIN decreased DMD by 21.7% (P < 0.05) and starch digestibility by 19.9% (P < 0.05) across particle sizes smaller than whole kernel. Experiment 3 addressed the time course of PIN effects in the rumen by observing ground samples of the hardest and softest lines over a 12-h in situ period. Increased PIN decreased DMD by 10.4% (P < 0.05) and starch digestibility by 11.0% (P < 0.05) across all time points. Dry matter and starch digestibility results demonstrated that increased expression of PIN was associated with a decreased rate of ruminal digestion independent of particle size. Puroindolines seem to aid in the protection of starch molecules from microbial digestion in the rumen, potentially increasing the amount of starch entering the small intestine.


Subject(s)
Cattle/metabolism , Plant Proteins/metabolism , Rumen/metabolism , Starch/metabolism , Triticum/metabolism , Animals , Food Handling/methods , Microscopy, Electron, Scanning , Particle Size , Plant Proteins/biosynthesis , Plant Proteins/genetics , Starch/ultrastructure , Time Factors , Triticum/chemistry , Triticum/classification , Triticum/genetics
9.
Theor Appl Genet ; 108(6): 1089-97, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15067395

ABSTRACT

Wheat grain is sold based upon several physiochemical characteristics, one of the most important being grain texture. Grain texture in wheat directly affects many end use qualities such as milling yield, break flour yield, and starch damage. The hardness (Ha) locus located on the short arm of chromosome 5D is known to control grain hardness in wheat. This locus contains the puroindoline A ( pina) and puroindoline B ( pinb) genes. All wheats to date that have mutations in pina or pinb are hard textured, while wheats possessing both the 'soft type' pina-D1a and pinb-D1a sequences are soft. Furthermore, it has been shown that complementation of the pinb-D1b mutation in hard spring wheat can restore a soft phenotype. Here, our objective was to identify and characterize the effect the puroindoline genes have on grain texture independently and together. To accomplish this we transformed a hard red spring wheat possessing a pinb-D1b mutation with 'soft type' pina and pinb, creating transgenic isolines that have added pina, pinb, or pina and pinb. Northern blot analysis of developing control and transgenic lines indicated that grain hardness differences were correlated with the timing of the expression of the native and transgenically added puroindoline genes. The addition of PINA decreased grain hardness less than the reduction seen with added PINB. Seeds from lines having more 'soft type' PINB than PINA were the softest. Friabilin abundance was correlated with the presence of both 'soft type' PINA and PINB and did not correlate well with total puroindoline abundance. The data indicates that PINA and PINB interact to form friabilin and together affect wheat grain texture.


Subject(s)
Gene Expression Regulation, Plant , Phenotype , Plant Proteins/metabolism , Triticum/genetics , Blotting, Northern , DNA Primers , Genetic Vectors/genetics , Genetic Vectors/metabolism , Plants, Genetically Modified , Time Factors , Transformation, Genetic , Triticum/metabolism
10.
Theor Appl Genet ; 107(8): 1463-8, 2003 Nov.
Article in English | MEDLINE | ID: mdl-12955206

ABSTRACT

Puroindolines largely influence cereal grain hardness. In order to understand how they exert this influence, we carried out a molecular analysis of the pina and pinb genes of many Italian wheat cultivars. On the basis of their pin genotypes they could be divided into three groups: Pina-D1a/Pinb-D1a; Pina-D1a/Pinb-D1b; and Pina-D1b/Pinb-D1a. Five cultivars from each group were chosen to be studied to examine the quantity of puroindolines associated with starch (friabilin) and the amount not associated with starch. In addition, the level of pina expression was measured using RT-PCR. Soft cultivars ( Pina-D1a/Pinb-D1a) exhibited the highest level of expression of pina; among the hard cultivars, those with the Pina-D1a/Pinb-D1b genotype showed a lower level of expression, while those with the Pina-D1b/Pinb-D1a genotype did not express pina. Total puroindoline and friabilin content was then measured by flow cytometry. Soft Pina-D1a/Pinb-D1a cultivars displayed high puroindoline content that was primarily starch associated. Hard Pina-D1b/Pinb-D1a cultivars had very low puroindoline content with no puroindoline bound to starch. Hard Pina-D1a/Pinb-D1b cultivars were highly heterogeneous with respect to both the content of puroindolines and the level of association with starch. The accurate quantification of puroindolines in starch-bound and not starch-bound forms in association with molecular analysis, indicates that pina expression and presence controls the abundance of total puroindoline and its association with starch.


Subject(s)
Gene Expression Regulation, Plant , Plant Proteins/genetics , Starch/metabolism , Base Sequence , DNA Primers , Flow Cytometry , Plant Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction
11.
Genome ; 45(3): 584-91, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12033628

ABSTRACT

Endosperm texture has a tremendous impact on the end-use quality of wheat (Triticum aestivum L.). Cultivars of barley (Hordeum vulgare L.), a close relative of wheat, also vary measurably in grain hardness. However, in contrast to wheat, little is known about the genetic control of barley grain hardness. Puroindolines are endosperm-specific proteins found in wheat and its relatives. In wheat, puroindoline sequence variation controls the majority of wheat grain texture variation. Hordoindolines, the puroindoline homologs of barley, have been identified and mapped. Recently, substantial allelic variation was found for hordoindolines among commercial barley cultivars. Our objective was to determine the influence of hordoindoline allelic variation upon grain hardness and dry matter digestibility in the 'Steptoe' x 'Morex' mapping population. This population is segregating for hordoindoline allele type, which was measured by a HinA/HinB/Gsp composite marker. One-hundred and fifty lines of the 'Steptoe' x 'Morex' population were grown in a replicated field trial. Grain hardness was estimated by near-infrared reflectance (NIR) and measured using the single kernel characterization system (SKCS). Variation attributable to the HinA/HinB/Gsp locus averaged 5.7 SKCS hardness units (SKCS U). QTL analysis revealed the presence of several areas of the genome associated with grain hardness. The largest QTL mapped to the HinA/HinB/Gsp region on the short arm of chomosome 7 (5H). This QTL explains 22% of the SKCS hardness difference observed in this study. The results indicate that the Hardness locus is present in barley and implicates the hordoindolines in endosperm texture control.


Subject(s)
Hordeum/genetics , Quantitative Trait Loci , Plant Proteins/genetics , Seeds/metabolism
12.
Mol Plant Microbe Interact ; 14(10): 1255-60, 2001 Oct.
Article in English | MEDLINE | ID: mdl-11605965

ABSTRACT

Antimicrobial peptides play a role in the immune systems of animals and plants by limiting pathogen infection and growth. The puroindolines, endosperm-specific proteins involved in wheat seed hardness, are small proteins reported to have in vitro antimicrobial properties. Rice, the most widely used cereal crop worldwide, normally does not contain puroindolines. Transgenic rice plants that constitutively express the puroindoline genes pinA and/or pinB throughout the plants were produced. PIN extracts of leaves from the transgenic plants reduced in vitro growth of Magnaporthe grisea and Rhizoctonia solani, two major fungal pathogens of rice, by 35 to 50%. Transgenic rice expressing pinA and/or pinB showed significantly increased tolerance to M. grisea (rice blast), with a 29 to 54% reduction in symptoms, and R. solani (sheath blight), with an 11 to 22% reduction in symptoms. Puroindolines are effective in vivo in antifungal proteins and could be valuable new tools in the control of a wide range of fungal pathogens of crop plants.


Subject(s)
Magnaporthe/growth & development , Oryza/genetics , Plant Diseases/microbiology , Plant Proteins/genetics , Rhizoctonia/growth & development , Triticum/genetics , Gene Expression Regulation, Plant , Immunity, Innate , Magnaporthe/pathogenicity , Oryza/metabolism , Oryza/microbiology , Plant Proteins/metabolism , Plants, Genetically Modified , Rhizoctonia/pathogenicity , Seeds/genetics
13.
Plant Physiol ; 127(1): 173-83, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11553745

ABSTRACT

Plant ADP-glucose pyrophosphorylase (AGP) is a heterotetrameric enzyme composed of two large and two small subunits. Here, we report the structures of the maize (Zea mays) genes encoding AGP small subunits of leaf and endosperm. Excluding exon 1, protein-encoding sequences of the two genes are nearly identical. Exon 1 coding sequences, however, possess no similarity. Introns are placed in identical positions and exhibit obvious sequence similarity. Size differences are primarily due to insertions and duplications, hallmarks of transposable element visitation. Comparison of the maize genes with other plant AGP small subunit genes leads to a number of noteworthy inferences concerning the evolution of these genes. The small subunit gene can be divided into two modules. One module, encompassing all coding information except that derived from exon 1, displays striking similarity among all genes. It is surprising that members from eudicots form one group, whereas those from cereals form a second group. This implies that the duplications giving rise to family members occurred at least twice and after the separation of eudicots and monocot cereals. One intron within this module may have had a transposon origin. A different evolutionary history is suggested for exon 1. These sequences define three distinct groups, two of which come from cereal seeds. This distinction likely has functional significance because cereal endosperm AGPs are cytosolic, whereas all other forms appear to be plastid localized. Finally, whereas barley (Hordeum vulgare) reportedly employs only one gene to encode the small subunit of the seed and leaf, maize utilizes the two genes described here.


Subject(s)
Nucleotidyltransferases/genetics , Zea mays/enzymology , Base Sequence , Cytosol/metabolism , DNA Transposable Elements , Evolution, Molecular , Exons , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Glucose-1-Phosphate Adenylyltransferase , Introns , Molecular Sequence Data , Nucleotidyltransferases/classification , Nucleotidyltransferases/metabolism , Phylogeny , Plant Leaves/enzymology , Plant Leaves/genetics , Plastids/metabolism , Protein Conformation , Seeds/enzymology , Seeds/genetics , Sequence Homology, Amino Acid , Zea mays/classification , Zea mays/genetics
14.
Nat Biotechnol ; 19(2): 162-6, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11175732

ABSTRACT

The puroindoline genes (pinA and pinB) are believed to play critical roles in wheat (Triticum aestivum L.) grain texture. Mutations in either gene are associated with hard wheat. No direct evidence exists for the ability of puroindolines to modify cereal grain texture. Interestingly, puroindolines appear to be absent in cereal species outside of the tribe Triticeae, in which the dominant form of grain texture is hard. To assess the ability of the puroindolines to modify cereal grain texture, the puroindolines were introduced into rice (Oryzae sativa L.) under the control of the maize ubiquitin promoter. Textural analysis of transgenic rice seeds indicated that expression of PINA and/or PINB reduced rice grain hardness. After milling, flour prepared from these softer seeds had reduced starch damage and an increased percentage of fine flour particles. Our data support the hypothesis that puroindolines play important roles in controlling wheat grain texture and may be useful in modifying grain texture of other cereals.


Subject(s)
Oryza/genetics , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Triticum/genetics , Amino Acid Sequence , Homozygote , Molecular Sequence Data , Peptide Fragments/chemistry , Plant Proteins/analysis , Plant Proteins/chemistry , Polymerase Chain Reaction , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Seeds , Starch/analysis
15.
Proc Natl Acad Sci U S A ; 95(11): 6262-6, 1998 May 26.
Article in English | MEDLINE | ID: mdl-9600953

ABSTRACT

"Soft" and "hard" are the two main market classes of wheat (Triticum aestivum L.) and are distinguished by expression of the Hardness gene. Friabilin, a marker protein for grain softness (Ha), consists of two proteins, puroindoline a and b (pinA and pinB, respectively). We previously demonstrated that a glycine to serine mutation in pinB is linked inseparably to grain hardness. Here, we report that the pinB serine mutation is present in 9 of 13 additional randomly selected hard wheats and in none of 10 soft wheats. The four exceptional hard wheats not containing the serine mutation in pinB express no pinA, the remaining component of the marker protein friabilin. The absence of pinA protein was linked inseparably to grain hardness among 44 near-isogenic lines created between the soft variety Heron and the hard variety Falcon. Both pinA and pinB apparently are required for the expression of grain softness. The absence of pinA protein and transcript and a glycine-to-serine mutation in pinB are two highly conserved mutations associated with grain hardness, and these friabilin genes are the suggested tightly linked components of the Hardness gene. A previously described grain hardness related gene termed "GSP-1" (grain softness protein) is not controlled by chromosome 5D and is apparently not involved in grain hardness. The association of grain hardness with mutations in both pinA or pinB indicates that these two proteins alone may function together to effect grain softness. Elucidation of the molecular basis for grain hardness opens the way to understanding and eventually manipulating this wheat endosperm property.

16.
Proc Natl Acad Sci U S A ; 93(12): 5824-9, 1996 Jun 11.
Article in English | MEDLINE | ID: mdl-8650177

ABSTRACT

The maize endosperm-specific gene shrunken2 (Sh2) encodes the large subunit of the heterotetrameric starch synthetic enzyme adenosine diphosphoglucose pyrophosphorylase (AGP; EC 2.7.7.27). Here we exploit an in vivo, site-specific mutagenesis system to create short insertion mutations in a region of the gene known to be involved in the allosteric regulation of AGP. The site-specific mutagen is the transposable element dissociation (Ds). Approximately one-third (8 of 23) of the germinal revertants sequenced restored the wild-type sequence, whereas the remaining revertants contained insertions of 3 or 6 bp. All revertants retained the original reading frame 3' to the insertion site and involved the addition of tyrosine and/or serine. Each insertion revertant reduced total AGP activity and the amount of the SH2 protein. The revertant containing additional tyrosine and serine residues increased seed weight 11-18% without increasing or decreasing the percentage of starch. Other insertion revertants lacking an additional serine reduced seed weight. Reduced sensitivity to phosphate, a long-known inhibitor of AGP, was found in the high seed-weight revertant. This alteration is likely universally important since insertion of tyrosine and serine in the potato large subunit of AGP at the comparable position and expression in Escherichia coli also led to a phosphate-insensitive enzyme. These results show that single gene mutations giving rise to increased seed weight, and therefore perhaps yield, are clearly possible in a plant with a long history of intensive and successful breeding efforts.


Subject(s)
Mutation , Nucleotidyltransferases/genetics , Seeds , Zea mays/embryology , Base Sequence , DNA Primers , Glucose-1-Phosphate Adenylyltransferase , Hydrolysis , Molecular Sequence Data , Nucleotidyltransferases/metabolism , Zea mays/enzymology , Zea mays/genetics
17.
Proc Natl Acad Sci U S A ; 91(25): 12150-4, 1994 Dec 06.
Article in English | MEDLINE | ID: mdl-7991598

ABSTRACT

The mechanisms by which introns are gained or lost in the evolution of eukaryotic genes remain poorly understood. The discovery that transposable elements sometimes alter RNA splicing to allow partial or imperfect removal of the element from the primary transcripts suggests that transposons are a potential and continuing source of new introns. To date, splicing events that precisely restore the wild-type RNA sequence at the site of insertion have not been detected. Here we describe alternative RNA splicing patterns that result in precise removal of a Dissociation (Ds) insertion and one copy of its eight-nucleotide host site duplication from an exon sequence of the maize shrunken2-mutabe1 (sh2-m1) mutant. In one case, perfect splicing of Ds was associated with aberrant splicing of an intron located 32 bp upstream of the insertion site. The second transcript type was indistinguishable from wild-type mRNA, indicating that Ds was spliced like a normal intron in about 2% of the sh2-m1 transcripts. Our results suggest that the transposition of Ds into sh2 in 1968, in effect, marked the creation of a new intron in a modern eukaryotic gene. The possibility of precise intron formation by a transposable element demonstrated here may be a general phenomenon of intron formation, since consensus intron splice sites can be explained by insertions that duplicate host sequences upon integration. A model is presented.


Subject(s)
DNA Transposable Elements , Zea mays/genetics , Alleles , Base Sequence , Consensus Sequence , Exons , Introns , Molecular Sequence Data , RNA Splicing , RNA, Messenger/biosynthesis , RNA, Plant/biosynthesis , Transcription, Genetic
18.
Plant Physiol ; 106(2): 713-722, 1994 Oct.
Article in English | MEDLINE | ID: mdl-12232363

ABSTRACT

We have demonstrated that expression of genes involved in starch and storage protein synthesis of the maize (Zea mays L.) endosperm are coordinated. Genetic lesions altering synthetic events in one biosynthetic pathway affect expression of genes in both pathways. Initial studies focused on shrunken2 (sh2) and brittle2 (bt2) mutants because these genes encode subunits of the same enzyme, ADP-glucose pyrophosphorylase. Analysis of various sh2- and bt2- mutant alleles showed that the most severe mutations also conditioned the largest increase in transcripts. The analysis was extended by monitoring the transcripts of the genes, shrunken1 (sh1, structural gene for Suc synthase), sh2, bt2, waxy1 (wx1, structural gene for starch synthase), and those of the large and small zeins in isogenic maize lines at 14, 22, and 30 d postpollination. Endosperms were wild type for all of these genes or contained sh1-, sh2-, bt1-, bt2-, opaque2 (o2-), or amylose-extender1 (ae1-) dull1 (du1-) wx1- mutations. Transcripts increased continually throughout kernel development in the mutants relative to the standard W64A used. Variation in the amount of Suc entering the developing seed also altered transcript amounts. The results indicate that starch and protein biosynthetic genes act in a concerted manner, and both are sensitive to mutationally induced differences.

19.
Mol Gen Genet ; 243(4): 400-8, 1994 May 25.
Article in English | MEDLINE | ID: mdl-8202085

ABSTRACT

The Shrunken-2 (Sh2) and Brittle-2 (Bt2) genes of maize encode subunits of the tetrameric maize endosperm ADPglucose pyrophosphorylase. However, in all sh2 and bt2 mutants so far examined, measurable ADPglucose pyrophosphorylase activity remains. We have investigated the origin of the residual activity found in various sh2 and bt2 mutants as well as tissue specific expression and post-translational modification of the Sh2 and Bt2 proteins. Sh2 and Bt2 cDNAs were expressed in Escherichia coli and antibodies were prepared against the resulting proteins SH2 and BT2 specific antibodies were used to demonstrate that SH2 and BT2 are endosperm specific, are altered or missing in various sh2 or bt2 mutants, and have a mol. wt. of 54 and 51 kDa respectively in the wild type. The Sh2 and Bt2 transcripts are also endosperm specific. Ten sh2 and eight bt2 mutants show varying severity of phenotypes expressed at transcript, protein subunit and kernel level. Synthesis of multiple transcripts and proteins commonly occurs as a result of sh2 or bt2 mutation. While all mutants produce detectable enzymic activity, not all produce detectable transcripts and proteins. To examine the origin of the apparent non-SH2/BT2 endosperm enzymic activity, homologs of Sh2 and Bt2, designated Agp1 and Agp2 respectively, were isolated from an embryo cDNA library and found to hybridize to endosperm transcripts distinct from those of Sh2 and Bt2. Thus Agp1 and Agp2 or closely related genes may be responsible for the residual activity in some sh2 and bt2 mutants. Surprisingly, no evidence of post-translational modification of the SH2 and BT2 protein subunits was detected.


Subject(s)
Mutation , Nucleotidyltransferases/genetics , Plant Proteins/genetics , Starch/biosynthesis , Zea mays/enzymology , Zea mays/genetics , Animals , Embryo, Nonmammalian/embryology , Glucose-1-Phosphate Adenylyltransferase , Nucleotidyltransferases/chemistry , Nucleotidyltransferases/metabolism , Organ Specificity , Plant Proteins/chemistry , Protein Processing, Post-Translational
SELECTION OF CITATIONS
SEARCH DETAIL
...