Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 7: 11528, 2016 05 20.
Article in English | MEDLINE | ID: mdl-27198961

ABSTRACT

Quantum point contacts are cornerstones of mesoscopic physics and central building blocks for quantum electronics. Although the Fermi wavelength in high-quality bulk graphene can be tuned up to hundreds of nanometres, the observation of quantum confinement of Dirac electrons in nanostructured graphene has proven surprisingly challenging. Here we show ballistic transport and quantized conductance of size-confined Dirac fermions in lithographically defined graphene constrictions. At high carrier densities, the observed conductance agrees excellently with the Landauer theory of ballistic transport without any adjustable parameter. Experimental data and simulations for the evolution of the conductance with magnetic field unambiguously confirm the identification of size quantization in the constriction. Close to the charge neutrality point, bias voltage spectroscopy reveals a renormalized Fermi velocity of ∼1.5 × 10(6) m s(-1) in our constrictions. Moreover, at low carrier density transport measurements allow probing the density of localized states at edges, thus offering a unique handle on edge physics in graphene devices.

2.
Nat Commun ; 5: 3488, 2014 Mar 24.
Article in English | MEDLINE | ID: mdl-24663028

ABSTRACT

The propagation of light through samples with random inhomogeneities can be described by way of transmission eigenchannels, which connect incoming and outgoing external propagating modes. Although the detailed structure of a disordered sample can generally not be fully specified, these transmission eigenchannels can nonetheless be successfully controlled and used for focusing and imaging light through random media. Here we demonstrate that in deeply localized quasi-1D systems, the single dominant transmission eigenchannel is formed by an individual Anderson-localized mode or by a 'necklace state'. In this single-channel regime, the disordered sample can be treated as an effective 1D system with a renormalized localization length, coupled through all the external modes to its surroundings. Using statistical criteria of the single-channel regime and pulsed excitations of the disordered samples allows us to identify long-lived localized modes and short-lived necklace states at long and short time delays, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...