Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 116(27): 13260-13265, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31213537

ABSTRACT

Electronic matter waves traveling through the weak and smoothly varying disorder potential of a semiconductor show a characteristic branching behavior instead of a smooth spreading of flow. By transferring this phenomenon to optics, we demonstrate numerically how the branched flow of light can be controlled to propagate along a single branch rather than along many of them at the same time. Our method is based on shaping the incoming wavefront and only requires partial knowledge of the system's transmission matrix. We show that the light flowing along a single branch has a broadband frequency stability such that one can even steer pulses along selected branches-a prospect with many interesting possibilities for wave control in disordered environments.

2.
Nature ; 537(7618): 76-79, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27454554

ABSTRACT

Physical systems with loss or gain have resonant modes that decay or grow exponentially with time. Whenever two such modes coalesce both in their resonant frequency and their rate of decay or growth, an 'exceptional point' occurs, giving rise to fascinating phenomena that defy our physical intuition. Particularly intriguing behaviour is predicted to appear when an exceptional point is encircled sufficiently slowly, such as a state-flip or the accumulation of a geometric phase. The topological structure of exceptional points has been experimentally explored, but a full dynamical encircling of such a point and the associated breakdown of adiabaticity have remained out of reach of measurement. Here we demonstrate that a dynamical encircling of an exceptional point is analogous to the scattering through a two-mode waveguide with suitably designed boundaries and losses. We present experimental results from a corresponding waveguide structure that steers incoming waves around an exceptional point during the transmission process. In this way, mode transitions are induced that transform this device into a robust and asymmetric switch between different waveguide modes. This work will enable the exploration of exceptional point physics in system control and state transfer schemes at the crossroads between fundamental research and practical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...