Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 61(16): 6319-6325, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35420429

ABSTRACT

The Si-H···Se contact in 1-mesitylselanyl-8-(dimethylsilyl)naphthalene (1), which exhibits the spatial arrangement of a δ-agostic interaction from geometric considerations, was investigated. Is this just enforced by close 1,8-proximity or is this a favorable interaction? Charge density studies are best suited to investigate the exact origin of the interaction and to quantify the properties. Hence, they are most elucidating. High-resolution X-ray diffraction data of 1 were collected, and a multipole refinement followed by a topological analysis using Bader's quantum theory of atoms in molecules was employed. The resulting bond properties were set in relation to high-level computational parameters. The comparison to Si-H···[M] agostics, hydride bonding, chalcogen bonds, and charge-inverted hydrogen bonds qualified the Si-H···Se noncovalent interaction to be best classified as a chalcogen-hydride bond.

2.
Chemistry ; 26(69): 16441-16449, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-32627900

ABSTRACT

Cyclic silylated chalconium borates 13[B(C6 F5 )4 ] and 14[B(C6 F5 )4 ] with peri-acenaphthyl and peri-naphthyl skeletons were synthesized from unsymmetrically substituted silanes 3, 4, 6, 7, 9 and 10 using the standard Corey protocol (Chalcogen Ch=O, S, Se, Te). The configuration at the chalcogen atom is trigonal pyramidal for Ch=S, Se, Te, leading to the formation of cis- and trans-isomers in the case of phenylmethylsilyl cations. With the bulkier tert-butyl group at silicon, the configuration at the chalcogen atoms is predetermined to give almost exclusively the trans-configurated cyclic silylchalconium ions. The barriers for the inversion of the configuration at the sulfur atoms of sulfonium ions 13 c and 14 a are substantial (72-74 kJ mol-1 ) as shown by variable temperature NMR spectroscopy. The neighboring group effect of the thiophenyl substituent is sufficiently strong to preserve chiral information at the silicon atom at low temperatures.

SELECTION OF CITATIONS
SEARCH DETAIL
...