Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 95(10)2021 04 26.
Article in English | MEDLINE | ID: mdl-33658342

ABSTRACT

The development of improved and universal anti-influenza vaccines would represent a major advance in the protection of human health. In order to facilitate the development of such vaccines, understanding how viral proteins can contribute to protection from disease is critical. Much of the previous work to address these questions relied on reductionist systems (i.e. vaccinating with individual proteins or VLPs that contain only a few viral proteins); thus we have an incomplete understanding of how immunity to different subsets of viral proteins contribute to protection. Here, we report the development of a platform in which a single viral protein can be deleted from an authentic viral particle that retains the remaining full complement of structural proteins and viral RNA. As a first study with this system, we chose to delete the major IAV antigen, the hemagglutinin protein, to evaluate how the other components of the viral particle contribute en masse to protection from influenza disease. Our results show that while anti-HA immunity plays a major role in protection from challenge with a vaccine-matched strain, the contributions from other structural proteins were the major drivers of protection against highly antigenically drifted, homosubtypic strains. This work highlights the importance of evaluating the inclusion of non-HA viral proteins in the development of broadly efficacious and long-lasting influenza vaccines.ImportanceInfluenza virus vaccines currently afford short-term protection from viruses that are closely related to the vaccine strains. There is currently much effort to develop improved, next-generation influenza vaccines that elicit broader and longer-lasting protection. While the hemagglutinin protein is the major viral antigen, in this work, we developed an approach with which to evaluate the contributions of the non-hemagglutinin proteins to vaccine mediated protection. Our results indicate that other structural proteins together may help to mediate broad antiviral protection and should be considered in the development of more universal influenza vaccines.

2.
Infect Immun ; 86(5)2018 05.
Article in English | MEDLINE | ID: mdl-29531132

ABSTRACT

We showed that human IgG supported the response by human innate immune cells to peptidoglycan (PGN) from Bacillus anthracis and PGN-induced complement activation. However, other serum constituents have been shown to interact with peptidoglycan, including the IgG-like soluble pattern recognition receptor serum amyloid P (SAP). Here, we compared the abilities of SAP and of IgG to support monocyte and complement responses to PGN. Utilizing in vitro methods, we demonstrate that SAP is superior to IgG in supporting monocyte production of cytokines in response to PGN. Like IgG, the response supported by SAP was enhanced by phagocytosis and signaling kinases, such as Syk, Src, and phosphatidylinositol 3-kinase, that are involved in various cellular processes, including Fc receptor signaling. Unlike IgG, SAP had no effect on the activation of complement in response to PGN. These data demonstrate an opsonophagocytic role for SAP in response to PGN that propagates a cellular response without propagating the formation of the terminal complement complex.


Subject(s)
Bacillus anthracis/immunology , Immunity, Innate/immunology , Immunoglobulin G/immunology , Peptidoglycan/immunology , Serum Amyloid P-Component/immunology , Humans
3.
PLoS One ; 13(2): e0193207, 2018.
Article in English | MEDLINE | ID: mdl-29474374

ABSTRACT

Peptidoglycan (PGN), a major component of bacterial cell walls, is a pathogen-associated molecular pattern (PAMP) that causes innate immune cells to produce inflammatory cytokines that escalate the host response during infection. In order to better understand the role of PGN in infection, we wanted to gain insight into the cellular receptor for PGN. Although the receptor was initially identified as Toll-like receptor 2 (TLR2), this receptor has remained controversial and other PGN receptors have been reported. We produced PGN from live cultures of Bacillus anthracis and Staphylococcus aureus and tested samples of PGN isolated during the purification process to determine at what point TLR2 activity was removed, if at all. Our results indicate that although live B. anthracis and S. aureus express abundant TLR2 ligands, highly-purified PGN from either bacterial source is not recognized by TLR2.


Subject(s)
Bacillus anthracis/chemistry , Immunity, Innate/drug effects , Peptidoglycan/pharmacology , Staphylococcus aureus/chemistry , Toll-Like Receptor 2/immunology , Animals , Bacillus anthracis/immunology , Female , Humans , Male , Mice , Mice, Mutant Strains , Peptidoglycan/chemistry , Peptidoglycan/immunology , Staphylococcus aureus/immunology , Toll-Like Receptor 2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...