Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 131(19): 190601, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38000438

ABSTRACT

Efficient suppression of errors without full error correction is crucial for applications with noisy intermediate-scale quantum devices. Error mitigation allows us to suppress errors in extracting expectation values without the need for any error correction code, but its applications are limited to estimating expectation values, and cannot provide us with high-fidelity quantum operations acting on arbitrary quantum states. To address this challenge, we propose to use error filtration (EF) for gate-based quantum computation, as a practical error suppression scheme without resorting to full quantum error correction. The result is a general-purpose error suppression protocol where the resources required to suppress errors scale independently of the size of the quantum operation, and does not require any logical encoding of the operation. The protocol provides error suppression whenever an error hierarchy is respected-that is, when the ancillary controlled-swap operations are less noisy than the operation to be corrected. We further analyze the application of EF to quantum random access memory, where EF offers hardware-efficient error suppression.

2.
Nature ; 616(7955): 50-55, 2023 04.
Article in English | MEDLINE | ID: mdl-36949196

ABSTRACT

The ambition of harnessing the quantum for computation is at odds with the fundamental phenomenon of decoherence. The purpose of quantum error correction (QEC) is to counteract the natural tendency of a complex system to decohere. This cooperative process, which requires participation of multiple quantum and classical components, creates a special type of dissipation that removes the entropy caused by the errors faster than the rate at which these errors corrupt the stored quantum information. Previous experimental attempts to engineer such a process1-7 faced the generation of an excessive number of errors that overwhelmed the error-correcting capability of the process itself. Whether it is practically possible to utilize QEC for extending quantum coherence thus remains an open question. Here we answer it by demonstrating a fully stabilized and error-corrected logical qubit whose quantum coherence is substantially longer than that of all the imperfect quantum components involved in the QEC process, beating the best of them with a coherence gain of G = 2.27 ± 0.07. We achieve this performance by combining innovations in several domains including the fabrication of superconducting quantum circuits and model-free reinforcement learning.

3.
Phys Rev Lett ; 126(18): 180501, 2021 May 07.
Article in English | MEDLINE | ID: mdl-34018799

ABSTRACT

The interaction of photons and coherent quantum systems can be employed to detect electromagnetic radiation with remarkable sensitivity. We introduce a quantum radiometer based on the photon-induced dephasing process of a superconducting qubit for sensing microwave radiation at the subunit photon level. Using this radiometer, we demonstrate the radiative cooling of a 1 K microwave resonator and measure its mode temperature with an uncertainty ∼0.01 K. We thus develop a precise tool for studying the thermodynamics of quantum microwave circuits, which provides new solutions for calibrating hybrid quantum systems and detecting candidate particles for dark matter.

4.
Sci Bull (Beijing) ; 66(17): 1789-1805, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-36654386

ABSTRACT

Bosonic modes have wide applications in various quantum technologies, such as optical photons for quantum communication, magnons in spin ensembles for quantum information storage and mechanical modes for reversible microwave-to-optical quantum transduction. There is emerging interest in utilizing bosonic modes for quantum information processing, with circuit quantum electrodynamics (circuit QED) as one of the leading architectures. Quantum information can be encoded into subspaces of a bosonic superconducting cavity mode with long coherence time. However, standard Gaussian operations (e.g., beam splitting and two-mode squeezing) are insufficient for universal quantum computing. The major challenge is to introduce additional nonlinear control beyond Gaussian operations without adding significant bosonic loss or decoherence. Here we review recent advances in universal control of a single bosonic code with superconducting circuits, including unitary control, quantum feedback control, driven-dissipative control and holonomic dissipative control. Various approaches to entangling different bosonic modes are also discussed.

5.
Phys Rev Lett ; 125(8): 080503, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32909762

ABSTRACT

An outstanding challenge for quantum information processing using bosonic systems is Gaussian errors such as excitation loss and added thermal noise errors. Thus, bosonic quantum error correction is essential. Most bosonic quantum error correction schemes encode a finite-dimensional logical qubit or qudit into noisy bosonic oscillator modes. In this case, however, the infinite-dimensional bosonic nature of the physical system is lost at the error-corrected logical level. On the other hand, there are several proposals for encoding an oscillator mode into many noisy oscillator modes. However, these oscillator-into-oscillators encoding schemes are in the class of Gaussian quantum error correction. Therefore, these codes cannot correct practically relevant Gaussian errors due to the established no-go theorems that state that Gaussian errors cannot be corrected by using only Gaussian resources. Here, we circumvent these no-go results and show that it is possible to correct Gaussian errors by using Gottesman-Kitaev-Preskill (GKP) states as non-Gaussian resources. In particular, we propose a non-Gaussian oscillator-into-oscillators code, namely the GKP two-mode squeezing code, and demonstrate that it can quadratically suppress additive Gaussian noise errors in both the position and momentum quadratures except for a small sublogarithmic correction. Furthermore, we demonstrate that our GKP two-mode squeezing code is near optimal in the weak noise limit by proving via quantum information theoretic tools that quadratic noise suppression is optimal when we use two physical oscillator modes. Lastly, we show that our non-Gaussian oscillator encoding scheme can also be used to correct excitation loss and thermal noise errors, which are dominant error sources in many realistic bosonic systems.

6.
Sci Adv ; 6(34)2020 Aug.
Article in English | MEDLINE | ID: mdl-32937376

ABSTRACT

The code capacity threshold for error correction using biased-noise qubits is known to be higher than with qubits without such structured noise. However, realistic circuit-level noise severely restricts these improvements. This is because gate operations, such as a controlled-NOT (CX) gate, which do not commute with the dominant error, unbias the noise channel. Here, we overcome the challenge of implementing a bias-preserving CX gate using biased-noise stabilized cat qubits in driven nonlinear oscillators. This continuous-variable gate relies on nontrivial phase space topology of the cat states. Furthermore, by following a scheme for concatenated error correction, we show that the availability of bias-preserving CX gates with moderately sized cats improves a rigorous lower bound on the fault-tolerant threshold by a factor of two and decreases the overhead in logical Clifford operations by a factor of five. Our results open a path toward high-threshold, low-overhead, fault-tolerant codes tailored to biased-noise cat qubits.

7.
Nature ; 584(7820): 205-209, 2020 08.
Article in English | MEDLINE | ID: mdl-32788737

ABSTRACT

Quantum superpositions of macroscopically distinct classical states-so-called Schrödinger cat states-are a resource for quantum metrology, quantum communication and quantum computation. In particular, the superpositions of two opposite-phase coherent states in an oscillator encode a qubit protected against phase-flip errors1,2. However, several challenges have to be overcome for this concept to become a practical way to encode and manipulate error-protected quantum information. The protection must be maintained by stabilizing these highly excited states and, at the same time, the system has to be compatible with fast gates on the encoded qubit and a quantum non-demolition readout of the encoded information. Here we experimentally demonstrate a method for the generation and stabilization of Schrödinger cat states based on the interplay between Kerr nonlinearity and single-mode squeezing1,3 in a superconducting microwave resonator4. We show an increase in the transverse relaxation time of the stabilized, error-protected qubit of more than one order of magnitude compared with the single-photon Fock-state encoding. We perform all single-qubit gate operations on timescales more than sixty times faster than the shortest coherence time and demonstrate single-shot readout of the protected qubit under stabilization. Our results showcase the combination of fast quantum control and robustness against errors, which is intrinsic to stabilized macroscopic states, as well as the potential of of these states as resources in quantum information processing5-8.

8.
Phys Rev Lett ; 125(26): 260509, 2020 Dec 31.
Article in English | MEDLINE | ID: mdl-33449723

ABSTRACT

We introduce a new approach to Gottesman-Kitaev-Preskill (GKP) states that treats their finite-energy version in an exact manner. Based on this analysis, we develop new qubit-oscillator circuits that autonomously stabilize a GKP manifold, correcting errors without relying on qubit measurements. Finally, we show numerically that logical information encoded in GKP states is very robust against typical oscillator noise sources when stabilized by these new circuits.

9.
Nature ; 566(7745): 509-512, 2019 02.
Article in English | MEDLINE | ID: mdl-30814714

ABSTRACT

Quantum computation presents a powerful new paradigm for information processing. A robust universal quantum computer can be realized with any well controlled quantum system, but a successful platform will ultimately require the combination of highly coherent, error-correctable quantum elements with at least one entangling operation between them1,2. Quantum information stored in a continuous-variable system-for example, a harmonic oscillator-can take advantage of hardware-efficient quantum error correction protocols that encode information in the large available Hilbert space of each element3-5. However, such encoded states typically have no controllable direct couplings, making deterministic entangling operations between them particularly challenging. Here we develop an efficient implementation of the exponential-SWAP operation6 and present its experimental realization between bosonic qubits stored in two superconducting microwave cavities. This engineered operation is analogous to the exchange interaction between discrete spin systems, but acts within any encoded subspace of the continuous-variable modes. Based on a control rotation, the operation produces a coherent superposition of identity and SWAP operations between arbitrary states of two harmonic oscillator modes and can be used to enact a deterministic entangling gate within quantum error correction codes. These results provide a valuable building block for universal quantum computation using bosonic modes.

10.
Phys Rev Lett ; 123(25): 250501, 2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31922763

ABSTRACT

Hybrid quantum systems in which acoustic resonators couple to superconducting qubits are promising quantum information platforms. High quality factors and small mode volumes make acoustic modes ideal quantum memories, while the qubit-phonon coupling enables the initialization and manipulation of quantum states. We present a scheme for quantum computing with multimode quantum acoustic systems, and based on this scheme, propose a hardware-efficient implementation of a quantum random access memory (QRAM). Quantum information is stored in high-Q phonon modes, and couplings between modes are engineered by applying off-resonant drives to a transmon qubit. In comparison to existing proposals that involve directly exciting the qubit, this scheme can offer a substantial improvement in gate fidelity for long-lived acoustic modes. We show how these engineered phonon-phonon couplings can be used to access data in superposition according to the state of designated address modes-implementing a QRAM on a single chip.

11.
Nat Commun ; 9(1): 652, 2018 02 13.
Article in English | MEDLINE | ID: mdl-29440766

ABSTRACT

Entangling gates between qubits are a crucial component for performing algorithms in quantum computers. However, any quantum algorithm must ultimately operate on error-protected logical qubits encoded in high-dimensional systems. Typically, logical qubits are encoded in multiple two-level systems, but entangling gates operating on such qubits are highly complex and have not yet been demonstrated. Here we realize a controlled NOT (CNOT) gate between two multiphoton qubits in two microwave cavities. In this approach, we encode a qubit in the high-dimensional space of a single cavity mode, rather than in multiple two-level systems. We couple two such encoded qubits together through a transmon, which is driven by an RF pump to apply the gate within 190 ns. This is two orders of magnitude shorter than the decoherence time of the transmon, enabling a high-fidelity gate operation. These results are an important step towards universal algorithms on error-corrected logical qubits.

12.
Phys Rev Lett ; 119(3): 030502, 2017 Jul 21.
Article in English | MEDLINE | ID: mdl-28777607

ABSTRACT

We investigate cat codes that can correct multiple excitation losses and identify two types of logical errors: bit-flip errors due to excessive excitation loss and dephasing errors due to quantum backaction from the environment. We show that selected choices of logical subspace and coherent amplitude significantly reduce dephasing errors. The trade-off between the two major errors enables optimized performance of cat codes in terms of minimized decoherence. With high coupling efficiency, we show that one-way quantum repeaters with cat codes feature a boosted secure communication rate per mode when compared to conventional encoding schemes, showcasing the promising potential of quantum information processing with continuous variable quantum codes.

13.
Phys Rev Lett ; 117(13): 133601, 2016 Sep 23.
Article in English | MEDLINE | ID: mdl-27715126

ABSTRACT

Quantum jumps of a qubit are usually observed between its energy eigenstates, also known as its longitudinal pseudospin component. Is it possible, instead, to observe quantum jumps between the transverse superpositions of these eigenstates? We answer positively by presenting the first continuous quantum nondemolition measurement of the transverse component of an individual qubit. In a circuit QED system irradiated by two pump tones, we engineer an effective Hamiltonian whose eigenstates are the transverse qubit states, and a dispersive measurement of the corresponding operator. Such transverse component measurements are a useful tool in the driven-dissipative operation engineering toolbox, which is central to quantum simulation and quantum error correction.

14.
Nature ; 536(7617): 441-5, 2016 08 25.
Article in English | MEDLINE | ID: mdl-27437573

ABSTRACT

Quantum error correction (QEC) can overcome the errors experienced by qubits and is therefore an essential component of a future quantum computer. To implement QEC, a qubit is redundantly encoded in a higher-dimensional space using quantum states with carefully tailored symmetry properties. Projective measurements of these parity-type observables provide error syndrome information, with which errors can be corrected via simple operations. The 'break-even' point of QEC--at which the lifetime of a qubit exceeds the lifetime of the constituents of the system--has so far remained out of reach. Although previous works have demonstrated elements of QEC, they primarily illustrate the signatures or scaling properties of QEC codes rather than test the capacity of the system to preserve a qubit over time. Here we demonstrate a QEC system that reaches the break-even point by suppressing the natural errors due to energy loss for a qubit logically encoded in superpositions of Schrödinger-cat states of a superconducting resonator. We implement a full QEC protocol by using real-time feedback to encode, monitor naturally occurring errors, decode and correct. As measured by full process tomography, without any post-selection, the corrected qubit lifetime is 320 microseconds, which is longer than the lifetime of any of the parts of the system: 20 times longer than the lifetime of the transmon, about 2.2 times longer than the lifetime of an uncorrected logical encoding and about 1.1 longer than the lifetime of the best physical qubit (the |0〉f and |1〉f Fock states of the resonator). Our results illustrate the benefit of using hardware-efficient qubit encodings rather than traditional QEC schemes. Furthermore, they advance the field of experimental error correction from confirming basic concepts to exploring the metrics that drive system performance and the challenges in realizing a fault-tolerant system.

15.
Science ; 352(6289): 1087-91, 2016 May 27.
Article in English | MEDLINE | ID: mdl-27230374

ABSTRACT

Quantum superpositions of distinct coherent states in a single-mode harmonic oscillator, known as "cat states," have been an elegant demonstration of Schrödinger's famous cat paradox. Here, we realize a two-mode cat state of electromagnetic fields in two microwave cavities bridged by a superconducting artificial atom, which can also be viewed as an entangled pair of single-cavity cat states. We present full quantum state tomography of this complex cat state over a Hilbert space exceeding 100 dimensions via quantum nondemolition measurements of the joint photon number parity. The ability to manipulate such multicavity quantum states paves the way for logical operations between redundantly encoded qubits for fault-tolerant quantum computation and communication.

16.
Phys Rev Lett ; 115(24): 240501, 2015 Dec 11.
Article in English | MEDLINE | ID: mdl-26705615

ABSTRACT

We engineer a quantum bath that enables entropy and energy exchange with a one-dimensional Bose-Hubbard lattice with attractive on-site interactions. We implement this in an array of three superconducting transmon qubits coupled to a single cavity mode; the transmons represent lattice sites and their excitation quanta embody bosonic particles. Our cooling protocol preserves the particle number-realizing a canonical ensemble-and also affords the efficient preparation of dark states which, due to symmetry, cannot be prepared via coherent drives on the cavity. Furthermore, by applying continuous microwave radiation, we also realize autonomous feedback to indefinitely stabilize particular eigenstates of the array.

17.
Nature ; 504(7480): 419-22, 2013 Dec 19.
Article in English | MEDLINE | ID: mdl-24270808

ABSTRACT

Quantum error correction codes are designed to protect an arbitrary state of a multi-qubit register from decoherence-induced errors, but their implementation is an outstanding challenge in the development of large-scale quantum computers. The first step is to stabilize a non-equilibrium state of a simple quantum system, such as a quantum bit (qubit) or a cavity mode, in the presence of decoherence. This has recently been accomplished using measurement-based feedback schemes. The next step is to prepare and stabilize a state of a composite system. Here we demonstrate the stabilization of an entangled Bell state of a quantum register of two superconducting qubits for an arbitrary time. Our result is achieved using an autonomous feedback scheme that combines continuous drives along with a specifically engineered coupling between the two-qubit register and a dissipative reservoir. Similar autonomous feedback techniques have been used for qubit reset, single-qubit state stabilization, and the creation and stabilization of states of multipartite quantum systems. Unlike conventional, measurement-based schemes, the autonomous approach uses engineered dissipation to counteract decoherence, obviating the need for a complicated external feedback loop to correct errors. Instead, the feedback loop is built into the Hamiltonian such that the steady state of the system in the presence of drives and dissipation is a Bell state, an essential building block for quantum information processing. Such autonomous schemes, which are broadly applicable to a variety of physical systems, as demonstrated by the accompanying paper on trapped ion qubits, will be an essential tool for the implementation of quantum error correction.

18.
Science ; 342(6158): 607-10, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24072821

ABSTRACT

In contrast to a single quantum bit, an oscillator can store multiple excitations and coherences provided one has the ability to generate and manipulate complex multiphoton states. We demonstrate multiphoton control by using a superconducting transmon qubit coupled to a waveguide cavity resonator with a highly ideal off-resonant coupling. This dispersive interaction is much greater than decoherence rates and higher-order nonlinearities to allow simultaneous manipulation of hundreds of photons. With a tool set of conditional qubit-photon logic, we mapped an arbitrary qubit state to a superposition of coherent states, known as a "cat state." We created cat states as large as 111 photons and extended this protocol to create superpositions of up to four coherent states. This control creates a powerful interface between discrete and continuous variable quantum computation and could enable applications in metrology and quantum information processing.

19.
Phys Rev Lett ; 111(5): 053603, 2013 Aug 02.
Article in English | MEDLINE | ID: mdl-23952399

ABSTRACT

We identify signatures of the intrinsic nonlinear interaction between light and mechanical motion in cavity optomechanical systems. These signatures are observable even when the cavity linewidth exceeds the optomechanical coupling rate. A strong laser drive red detuned by twice the mechanical frequency from the cavity resonance frequency makes two-phonon processes resonant, which leads to a nonlinear version of optomechanically induced transparency. This effect provides a new method of measuring the average phonon number of the mechanical oscillator. Furthermore, we show that if the strong laser drive is detuned by half the mechanical frequency, optomechanically induced transparency also occurs due to resonant two-photon processes. The cavity response to a second probe drive is in this case nonlinear in the probe power. These effects should be observable with optomechanical coupling strengths that have already been realized in experiments.

20.
Nature ; 495(7440): 205-9, 2013 Mar 14.
Article in English | MEDLINE | ID: mdl-23486059

ABSTRACT

To create and manipulate non-classical states of light for quantum information protocols, a strong, nonlinear interaction at the single-photon level is required. One approach to the generation of suitable interactions is to couple photons to atoms, as in the strong coupling regime of cavity quantum electrodynamic systems. In these systems, however, the quantum state of the light is only indirectly controlled by manipulating the atoms. A direct photon-photon interaction occurs in so-called Kerr media, which typically induce only weak nonlinearity at the cost of significant loss. So far, it has not been possible to reach the single-photon Kerr regime, in which the interaction strength between individual photons exceeds the loss rate. Here, using a three-dimensional circuit quantum electrodynamic architecture, we engineer an artificial Kerr medium that enters this regime and allows the observation of new quantum effects. We realize a gedanken experiment in which the collapse and revival of a coherent state can be observed. This time evolution is a consequence of the quantization of the light field in the cavity and the nonlinear interaction between individual photons. During the evolution, non-classical superpositions of coherent states (that is, multi-component 'Schrödinger cat' states) are formed. We visualize this evolution by measuring the Husimi Q function and confirm the non-classical properties of these transient states by cavity state tomography. The ability to create and manipulate superpositions of coherent states in such a high-quality-factor photon mode opens perspectives for combining the physics of continuous variables with superconducting circuits. The single-photon Kerr effect could be used in quantum non-demolition measurement of photons, single-photon generation, autonomous quantum feedback schemes and quantum logic operations.

SELECTION OF CITATIONS
SEARCH DETAIL
...