Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Emerg Microbes Infect ; 11(1): 1843-1856, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35788177

ABSTRACT

Human Borna disease virus 1 (BoDV-1) encephalitis is a severe emerging disease with a very high case-fatality rate. While the clinical disease, case definitions, diagnostic algorithms and neuropathology have been described, very little is known about the immunological processes of human BoDV-1 encephalitis. Here, we analyzed serum and cerebrospinal fluid (CSF) samples from 10 patients with fatal BoDV-1 encephalitis for changes of different cytokines, chemokines, growth factors and other biomarkers over time. From one of these individuals, also autoptic formalin-fixed brain tissue was analyzed for the expression of inflammatory biomarkers by mRNA levels and immunostaining; in a further patient, only formalin-fixed brain tissue was available and examined in addition. A marked and increasing immune activation from the initial phase to the last phase of acute BoDV-1 encephalitis is shown in serum and CSF, characterized by cytokine concentration changes (IFNγ, IL-5, IL-6, IL-9, IL-10, IL-12p40, IL-13, IL-18, TGF-ß1) with a predominantly pro-inflammatory pattern over time. IFNγ production was demonstrated in endothelial cells, astrocytes and microglia, IL-6 in activated microglia, and TGF-ß1 in endothelial cells, activated astrocytes and microglia. This was paralleled by an increase of chemokines (CCL-2, CCL-5, CXCL-10, IL-8) to attract immune cells to the site of infection, contributing to inflammation and tissue damage. Pathologically low growth factor levels (BDNF, ß-NGF, PDGF) were seen. Changed levels of arginase and sTREM further fostered the pro-inflammatory state. This dysbalanced, pro-inflammatory state likely contributes importantly to the fatal outcome of human BoDV-1 encephalitis, and might be a key target for possible treatment attempts.


Subject(s)
Borna disease virus , Encephalitis , Biomarkers , Chemokines , Cytokines/metabolism , Encephalitis/virology , Endothelial Cells/metabolism , Formaldehyde , Humans , Interleukin-6 , Transforming Growth Factor beta1
2.
Med Microbiol Immunol ; 211(2-3): 143-152, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35543881

ABSTRACT

African tick bite fever, an acute febrile illness, is caused by the obligate intracellular bacterium Rickettsia africae. Immune responses to rickettsial infections have so far mainly been investigated in vitro with infected endothelial cells as the main target cells, and in mouse models. Patient studies are rare and little is known about the immunology of human infections. In this study, inflammatory mediators and T cell responses were examined in samples from 13 patients with polymerase chain reaction-confirmed R. africae infections at different time points of illness. The Th1-associated cytokines IFNγ and IL-12 were increased in the acute phase of illness, as were levels of the T cell chemoattractant cytokine CXCL-10. In addition, the anti-inflammatory cytokine IL-10 and also IL-22 were elevated. IL-22 but not IFNγ was increasingly produced by CD4+ and CD8+ T cells during illness. Besides IFNγ, IL-22 appears to play a protective role in rickettsial infections.


Subject(s)
Rickettsia Infections , Spotted Fever Group Rickettsiosis , Animals , CD8-Positive T-Lymphocytes , Cytokines , Endothelial Cells , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...